Synergistical Dipole–Dipole Interaction Induced Self‐Assembly of Phenoxazine‐Based Hole‐Transporting Materials for Efficient and Stable Inverted Perovskite Solar Cells

[1]  A. Jen,et al.  Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridine‐Based Dopant‐Free Polymer Semiconductor , 2021, Angewandte Chemie.

[2]  A. Jen,et al.  Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridine-based Dopant-free Polymer Semiconductor. , 2020, Angewandte Chemie.

[3]  B. Rech,et al.  Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction , 2020, Science.

[4]  A. Jen,et al.  Regulating Surface Termination for Efficient Inverted Perovskite Solar Cells with Greater Than 23% Efficiency. , 2020, Journal of the American Chemical Society.

[5]  B. Liu,et al.  Engineering of dendritic dopant-free hole transport molecules: enabling ultrahigh fill factor in perovskite solar cells with optimized dendron construction , 2020, Science China Chemistry.

[6]  A. Facchetti,et al.  Teaching old anchoring group new tricks: enabling low-cost, eco-friendly hole-transporting materials for efficient and stable perovskite solar cells. , 2020, Journal of the American Chemical Society.

[7]  Xingzhu Wang,et al.  A Review on Solution‐Processable Dopant‐Free Small Molecules as Hole‐Transporting Materials for Efficient Perovskite Solar Cells , 2020, Small Methods.

[8]  A. Jen,et al.  Modulation of Defects and Interfaces through Alkylammonium Interlayer for Efficient Inverted Perovskite Solar Cells , 2020 .

[9]  Meng Su,et al.  Bio-inspired vertebral design for scalable and flexible perovskite solar cells , 2020, Nature Communications.

[10]  A. Jen,et al.  Dopant‐Free Crossconjugated Hole‐Transporting Polymers for Highly Efficient Perovskite Solar Cells , 2020, Advanced science.

[11]  Peng Wang,et al.  Aza[5]helicene Rivals N‐Annulated Perylene as π‐Linker of D−π−D Typed Hole‐Transporters for Perovskite Solar Cells , 2020, Advanced Functional Materials.

[12]  Zhenghong Lu,et al.  Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells , 2020 .

[13]  N. Koch,et al.  Perfluorinated Self-Assembled Monolayers Enhance the Stability and Efficiency of Inverted Perovskite Solar Cells. , 2020, ACS nano.

[14]  Yongfang Li,et al.  Dibenzo[ b , d ]thiophene‐Cored Hole‐Transport Material with Passivation Effect Enabling the High‐Efficiency Planar p–i–n Perovskite Solar Cells with 83% Fill Factor , 2020, Solar RRL.

[15]  Q. Gong,et al.  Minimizing non-radiative recombination losses in perovskite solar cells , 2019, Nature Reviews Materials.

[16]  Zhen Li,et al.  Facile-Effective Hole-Transporting Materials Based on Dibenzo[a,c]carbazole: The Key Role of Linkage Position to Photovoltaic Performance of Perovskite Solar Cells , 2019, ACS Energy Letters.

[17]  S. Tsang,et al.  Rational Design of Dopant‐Free Coplanar D‐π‐D Hole‐Transporting Materials for High‐Performance Perovskite Solar Cells with Fill Factor Exceeding 80% , 2019, Advanced Energy Materials.

[18]  A. Djurišić,et al.  Dopant‐Free Small‐Molecule Hole‐Transporting Material for Inverted Perovskite Solar Cells with Efficiency Exceeding 21% , 2019, Advanced materials.

[19]  Michele Muccini,et al.  High‐Performance and Stable Perovskite Solar Cells Based on Dopant‐Free Arylamine‐Substituted Copper(II) Phthalocyanine Hole‐Transporting Materials , 2019, Advanced Energy Materials.

[20]  Tae Joo Shin,et al.  Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene) , 2019, Nature.

[21]  Chih‐Ping Chen,et al.  Thienoisoindigo-Based Dopant-Free Hole Transporting Material for Efficient p–i–n Perovskite Solar Cells with the Grain Size in Micrometer Scale , 2018, The Journal of Physical Chemistry C.

[22]  Rui Zhu,et al.  Enhanced photovoltage for inverted planar heterojunction perovskite solar cells , 2018, Science.

[23]  S. Manzhos,et al.  Molecular Engineering Using an Anthanthrone Dye for Low‐Cost Hole Transport Materials: A Strategy for Dopant‐Free, High‐Efficiency, and Stable Perovskite Solar Cells , 2018 .

[24]  Rongjin Li,et al.  2D Organic Materials for Optoelectronic Applications , 2018, Advanced materials.

[25]  Sung‐Ho Jin,et al.  Highly efficient air-stable/hysteresis-free flexible inverted-type planar perovskite and organic solar cells employing a small molecular organic hole transporting material , 2017 .

[26]  A. Jen,et al.  Molecular Engineered Hole‐Extraction Materials to Enable Dopant‐Free, Efficient p‐i‐n Perovskite Solar Cells , 2017 .

[27]  A. Jen,et al.  4‐Tert‐butylpyridine Free Organic Hole Transporting Materials for Stable and Efficient Planar Perovskite Solar Cells , 2017 .

[28]  Bo Chen,et al.  Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations , 2017, Nature Energy.

[29]  Anders Hagfeldt,et al.  Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21% , 2016, Nature Energy.

[30]  A. Jen,et al.  Rational Design of Dipolar Chromophore as an Efficient Dopant-Free Hole-Transporting Material for Perovskite Solar Cells. , 2016, Journal of the American Chemical Society.

[31]  C. Zhong,et al.  Spiro-OMeTAD single crystals: Remarkably enhanced charge-carrier transport via mesoscale ordering , 2016, Science Advances.

[32]  P. Heremans,et al.  Dopant-Free Hole-Transporting Material with a C3h Symmetrical Truxene Core for Highly Efficient Perovskite Solar Cells. , 2016, Journal of the American Chemical Society.

[33]  Yongbo Yuan,et al.  Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells , 2015, Nature Communications.

[34]  S. Tsang,et al.  Batch‐to‐Batch Variation of Polymeric Photovoltaic Materials: its Origin and Impacts on Charge Carrier Transport and Device Performances , 2014 .

[35]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[36]  M. Toney,et al.  A general relationship between disorder, aggregation and charge transport in conjugated polymers. , 2013, Nature materials.

[37]  Tzung-Fang Guo,et al.  CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells , 2013, Advanced materials.

[38]  F. Spano The spectral signatures of Frenkel polarons in H- and J-aggregates. , 2010, Accounts of chemical research.

[39]  S. Michielsen,et al.  Lotus effect: Superhydrophobicity , 2006 .