Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients

Predictive vegetation mapping can be defined as predicting the geographic distribution of the vegetation composition across a landscape from mapped environmental variables. Comput erized predictive vegetation mapping is made possible by the availability of digital maps of topography and other environmental variables such as soils, geology and climate variables, and geographic information system software for manipulating these data. Especially important to predictive vegetation mapping are interpolated climatic variables related to physiological tolerances, and topographic variables, derived from digital elevation grids, related to site energy and moisture balance. Predictive vegetation mapping is founded in ecological niche theory and gradient analysis, and driven by the need to map vegetation patterns over large areas for resource conservation planning, and to predict the effects of environmental change on vegetation distributions. Predictive vegetation mapping has advanced over the past two decades especially in conjunction with the development of remote sensing-based vegetation mapping and digital geographic information analysis. A number of statistical and, more recently, machine-learning methods have been used to develop and implement predictive vegetation models.

[1]  Kun Shan Chen,et al.  LAND-COVER CLASSIFICATION OF MULTISPECTRAL IMAGERY USING A DYNAMIC LEARNING NEURAL-NETWORK , 1995 .

[2]  J. E. Pinder,et al.  Forest mapping at Lassen volcanic national park, California, using Landsat TM data and a geographical information system , 1995 .

[3]  D. Peddle Knowledge formulation for supervised evidential classification , 1995 .

[4]  W. B. Yates,et al.  Classification of remotely sensed data by an artificial neural network: issues related to training data characteristics , 1995 .

[5]  V. Judson Harward,et al.  Mapping forest vegetation using landsat TM imagery and a canopy reflectance model , 1994 .

[6]  Daniel G. Brown Predicting vegetation types at treeline using topography and biophysical disturbance variables , 1994 .

[7]  J. Michaelsen,et al.  Regression Tree Analysis of satellite and terrain data to guide vegetation sampling and surveys , 1994 .

[8]  D. Marks,et al.  A global perspective of regional vegetation and hydrologic sensitivities from climatic change , 1994 .

[9]  R. Dubayah Modeling a solar radiation topoclimatology for the Rio Grande River Basin , 1994 .

[10]  Michael F. Goodchild,et al.  Integrating GIS and remote sensing for vegetation analysis and modeling: methodological issues , 1994 .

[11]  Susan L. Ustin,et al.  Vegetation mapping of forested ecosystems in interior Central Alaska , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[12]  A. Henderson‐sellers Global terrestrial vegetation 'prediction': the use and abuse of climate and application models , 1994 .

[13]  A. O. Nicholls,et al.  Determining species response functions to an environmental gradient by means of a β‐function , 1994 .

[14]  C. Daly,et al.  A Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain , 1994 .

[15]  V. Noest A Hydrology-Vegetation Interaction Model for Predicting the Occurrence of Plant Species in Dune Slacks , 1994 .

[16]  Brendan Mackey,et al.  Predicting the potential distribution of rain‐forest structural characteristics , 1994 .

[17]  P. Fisher Visualization of the reliability in classified remotely sensed images , 1994 .

[18]  Pol Coppin,et al.  Satellite inventory of Minnesota forest resources , 1994 .

[19]  Russell G. Congalton Proceedings : international symposium on spatial accuracy of natural resource data bases : unlocking the puzzle, 16-20 May 1994, Williamsburg, Virginia , 1994 .

[20]  B. Mackey,et al.  A climatic analysis of selected boreal tree species, and potential responses to global climate change , 1993 .

[21]  Ronald P. Neilson,et al.  A rule-based vegetation formation model for Canada , 1993 .

[22]  James M. Lenihan,et al.  Ecological response surfaces for North American boreal tree species and their use in forest classification , 1993 .

[23]  George M. Woodwell,et al.  Vegetation dynamics and global change , 1993 .

[24]  F. Kienast,et al.  A simulated map of the potential natural forest vegetation of Switzerland , 1993 .

[25]  W. Henry McNab,et al.  A topographic index to quantify the effect of mesoscale and form on site productivity , 1993 .

[26]  Brendan Mackey,et al.  A spatial analysis of the environmental relations of rainforest structural types , 1993 .

[27]  Scott L. Collins,et al.  The hierarchical continuum concept , 1993 .

[28]  Gary A. Peterson,et al.  Soil Attribute Prediction Using Terrain Analysis , 1993 .

[29]  Daniel L. Civco,et al.  Artificial Neural Networks for Land-Cover Classification and Mapping , 1993, Int. J. Geogr. Inf. Sci..

[30]  Jon Atli Benediktsson,et al.  Conjugate-gradient neural networks in classification of multisource and very-high-dimensional remote sensing data , 1993 .

[31]  N. Veitch,et al.  Habitat mapping from satellite imagery and wildlife survey data using a Bayesian modeling procedure in a GIS , 1993 .

[32]  Thomas M. Smith,et al.  Modeling Large-Scale Vegetation Dynamics , 1993 .

[33]  Thomas M. Smith,et al.  Plant Functional Types , 1993 .

[34]  W. Cramer,et al.  Assessing Impacts of Climate Change on Vegetation Using Climate Classification Systems , 1993 .

[35]  R. G. Wright,et al.  GAP ANALYSIS: A GEOGRAPHIC APPROACH TO PROTECTION OF BIOLOGICAL DIVERSITY , 1993 .

[36]  R. Dubayah,et al.  The topographic distribution of annual incoming solar radiation in the Rio Grande River basin , 1992 .

[37]  George P. Malanson,et al.  Realized versus fundamental niche functions in a model of chaparral response to climatic change , 1992 .

[38]  J. Leathwick,et al.  Forest pattern, climate and vulcanism in central North Island, New Zealand , 1992 .

[39]  Frank W. Davis,et al.  Sensitivity of wildlife habitat models to uncertainties in GIS data , 1992 .

[40]  A. Martínez-Taberner,et al.  Prediction of potential submerged vegetation in a silted coastal marsh, Albufera of Majorca, Balearic Islands , 1992 .

[41]  A. R. Palmer,et al.  Predicting the distribution of plant communities using annual rainfall and elevation: an example from southern Africa , 1992 .

[42]  W. Cramer,et al.  A global biome model based on plant physiology and dominance, soil properties and climate , 1992 .

[43]  Paul V. Bolstad,et al.  Improved classification of forest vegetation in northern Wisconsin through a rule-based combination of soils, terrain, and Landsat Thematic Mapper data , 1992 .

[44]  Steven E. Franklin,et al.  A three-stage classifier for remote sensing of mountain environments , 1992 .

[45]  Michael L. Morrison,et al.  Wildlife-habitat relationships , 1992 .

[46]  Michael F. Goodchild,et al.  Development and test of an error model for categorical data , 1992, Int. J. Geogr. Inf. Sci..

[47]  Daryl Pregibon,et al.  Tree-based models , 1992 .

[48]  Brian G. Lees,et al.  Decision-tree and rule-induction approach to integration of remotely sensed and GIS data in mapping vegetation in disturbed or hilly environments , 1991 .

[49]  W. Westman,et al.  MEASURING REALIZED NICHE SPACES: CLIMATIC RESPONSE OF CHAPARRAL AND COASTAL SAGE SCRUB , 1991 .

[50]  Thomas M. Smith,et al.  Spatial applications of gap models , 1991 .

[51]  Michael N. DeMers Classification and Purpose in Automated Vegetation Maps , 1991 .

[52]  N. Lam,et al.  Environmental analysis using integrated GIS and remotely sensed data - Some research needs and priorities , 1991 .

[53]  Kim Lowell,et al.  Utilizing discriminant function analysis with a geographical information system to model ecological succession spatially , 1991, Int. J. Geogr. Inf. Sci..

[54]  B. Lees,et al.  A new method for predicting vegetation distributions using decision tree analysis in a geographic information system , 1991 .

[55]  Monica G. Turner,et al.  Spatial models of ecological systems and processes: The role of GIS , 1991 .

[56]  D. Peddle,et al.  Image texture processing and data integration for surface pattern discrimination , 1991 .

[57]  Manfred Ehlers,et al.  Integration of remote sensing and GIS: Data and data access , 1991 .

[58]  F. Sklar,et al.  The development of dynamic spatial models for landscape ecology: a review and prognosis , 1991 .

[59]  A. J. Bayes,et al.  Algorithms for monotonic functions and their application to ecological studies in vegetation science , 1991 .

[60]  G. F. Frazier,et al.  A spatial model for studying the effects of climatic change on the structure of landscapes subject to large disturbances , 1991 .

[61]  Michael Blakemore,et al.  The accuracy of spatial databases , 1991 .

[62]  N. L. Faust,et al.  Geographic information systems and remote sensing future computing environment , 1991 .

[63]  K. Beven,et al.  THE PREDICTION OF HILLSLOPE FLOW PATHS FOR DISTRIBUTED HYDROLOGICAL MODELLING USING DIGITAL TERRAIN MODELS , 1991 .

[64]  R. Itami,et al.  GIS-based habitat modeling using logistic multiple regression : a study of the Mt. Graham red squirrel , 1991 .

[65]  I. Moore,et al.  Digital terrain modelling: A review of hydrological, geomorphological, and biological applications , 1991 .

[66]  R. C. Maggio,et al.  An analysis of anthropogenic deforestation using logistic regression and GIS , 1990 .

[67]  Stephen R. Kessell,et al.  An Australian geographical information and modelling system for natural area management , 1990, Int. J. Geogr. Inf. Sci..

[68]  Steven E. Franklin,et al.  Variability and Classification of Landsat Thematic Mapper Spectral Response in Southwest Yukon , 1990 .

[69]  John A. Richards,et al.  Knowledge-based techniques for multi-source classification , 1990 .

[70]  A. O. Nicholls,et al.  Measurement of the realized qualitative niche: environmental niches of five Eucalyptus species , 1990 .

[71]  A. Skidmore Terrain position as mapped from a gridded digital elevation model , 1990 .

[72]  Marc P. Armstrong,et al.  Landscape fragmentation and dispersal in a model of riparian forest dynamics , 1990 .

[73]  C. Tomlin Geographic information systems and cartographic modeling , 1990 .

[74]  Steven E. Franklin,et al.  Classification of Hemlock Looper Defoliation Using Spot HRV Imagery , 1989 .

[75]  A. Skidmore An expert system classifies eucalypt forest types using thematic mapper data and a digital terrain model , 1989 .

[76]  Andrew K. Skidmore,et al.  A comparison of techniques for calculating gradient and aspect from a gridded digital elevation model , 1989, Int. J. Geogr. Inf. Sci..

[77]  M. Hutchinson,et al.  Mapping regions climatically suitable for particular species: an example using Africa , 1989 .

[78]  W. Henry McNab,et al.  Terrain shape index: quantifying effect of minor landforms on tree height , 1989 .

[79]  Arnold Barnett,et al.  Airline Safety: The Last Decade , 1989 .

[80]  A. O. Nicholls How to make biological surveys go further with generalised linear models , 1989 .

[81]  Brendan Mackey,et al.  Assessing the representativeness of the wet tropics of Queensland world heritage property , 1989 .

[82]  KIM E. LOWELL,et al.  Vegetative succession and controlled fire in a glades ecosystem A geographical information system approach , 1989, Int. J. Geogr. Inf. Sci..

[83]  Mark Sondheim,et al.  Methods for Improving Accuracy of Thematic Mapper Ground Cover Classifications , 1988 .

[84]  Frederick J. Swanson,et al.  Landform Effects on Ecosystem Patterns and Processes , 1988 .

[85]  P. A. WALKER,et al.  SIMPLE An inductive modelling and mapping tool for spatially-oriented data , 1988, Int. J. Geogr. Inf. Sci..

[86]  M. Goodchild Stepping Over The Line: Technological Constraints And the New Cartography , 1988 .

[87]  I. D. Moore,et al.  Topographic Effects on the Distribution of Surface Soil Water and the Location of Ephemeral Gullies , 1988 .

[88]  S. K. Jenson,et al.  Extracting topographic structure from digital elevation data for geographic information-system analysis , 1988 .

[89]  S. E. Franklin,et al.  Terrain analysis from digital patterns in geomorphometry and Landsat MSS spectral response , 1987 .

[90]  C. Thorne,et al.  Quantitative analysis of land surface topography , 1987 .

[91]  A. Bunting Agricultural environments. Characterization, classification and mapping. , 1987 .

[92]  M. Hutchinson,et al.  Methods of generation of weather sequences. , 1987 .

[93]  W. Cibula,et al.  Use of topographic and climatological models in a geographical data base to improve Landsat MSS classification for Olympic National Park , 1987 .

[94]  F. Woodward Climate and plant distribution , 1987 .

[95]  Michael F. Goodchild,et al.  A spatial analytical perspective on geographical information systems , 1987, Int. J. Geogr. Inf. Sci..

[96]  Ronald I. Miller Predicting rare plant distribution patterns in the southern Appalachians of the south-eastern U.S.A. , 1986 .

[97]  L. Band Topographic Partition of Watersheds with Digital Elevation Models , 1986 .

[98]  David M. Carneggie,et al.  Vegetation and terrain mapping in Alaska using Landsat MSS and digital terrain data , 1986 .

[99]  J. Franklin,et al.  Coniferous Forest Classification and Inventory Using Landsat and Digital Terrain Data , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[100]  Neil Wrigley,et al.  Categorical Data Analysis for Geographers and Environmental Scientists , 1985 .

[101]  Mike P. Austin,et al.  Continuum Concept, Ordination Methods, and Niche Theory , 1985 .

[102]  J. Shipman,et al.  Using landform and vegetative factors to improve the interpretation of Landsat imagery: land-cover units associated with major landform conditions were readily classified with reasonable accuracy to level 3 and at times to level 4 , 1984 .

[103]  J. Dozier,et al.  Automated basin delineation from digital elevation data , 1984 .

[104]  James Frew,et al.  Automated basin delineation from digital terrain data , 1983 .

[105]  A. Strahler Stratification of natural vegetation for forest and rangeland inventory using Landsat digital imagery and collateral data , 1981 .

[106]  Peter J. Richerson,et al.  Patterns of Plant Species Diversity in California: Relation to Weather and Topography , 1980, The American Naturalist.

[107]  Alan H. Strahler,et al.  The Use of Prior Probabilities in Maximum Likelihood Classification , 1980 .

[108]  Neil Wrigley,et al.  Developments in the statistical analysis of categorical data , 1979 .

[109]  S. R. Kessell Perspectives in fire research , 1978 .

[110]  R. Whittaker Direct Gradient Analysis , 1978 .

[111]  T. Logan,et al.  Improving forest cover classification accuracy from Landsat by incorporating topographic information , 1978 .

[112]  M. Wali,et al.  Analysis of a North Dakota Gallery Forest: Vegetation in Relation to Topographic and Soil Gradients , 1974 .

[113]  Waldo R. Tobler,et al.  Automation and Cartography , 1959 .

[114]  L. Holdridge Determination of World Plant Formations From Simple Climatic Data. , 1947, Science.

[115]  H. Gleason,et al.  The individualistic concept of the plant association , 1939 .

[116]  W. Köppen Das geographische System der Klimate , 1936 .

[117]  enry,et al.  A topographic index to quantify the effect of mesascale landform on site productivity , 2022 .