Safety-Critical Support Vector Regressor Controller for Nonlinear Systems

[1]  Gülay Öke Günel,et al.  Generalized self-tuning regulator based on online support vector regression , 2017, Neural Computing and Applications.

[2]  Laura Bahiense,et al.  A COMPARATIVE STUDY BETWEEN ARTIFICIAL NEURAL NETWORK AND SUPPORT VECTOR MACHINE FOR ACUTE CORONARY SYNDROME PROGNOSIS , 2016 .

[3]  Gülay Öke Günel,et al.  An adaptive support vector regressor controller for nonlinear systems , 2015, Soft Computing.

[4]  Fikret Caliskan,et al.  Fault diagnosis in a nonlinear three-tank system via ANFIS , 2013, 2013 8th International Conference on Electrical and Electronics Engineering (ELECO).

[5]  Eric Feron,et al.  From Design to Implementation: an Automated, Credible Autocoding Chain for Control Systems , 2013, ArXiv.

[6]  Tipu Z. Aziz,et al.  Parkinson's Disease tremor classification - A comparison between Support Vector Machines and neural networks , 2012, Expert Syst. Appl..

[7]  Yang Shao,et al.  Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points , 2012 .

[8]  Romain Jobredeaux,et al.  Autocoding control software with proofs I: Annotation translation , 2011, 2011 IEEE/AIAA 30th Digital Avionics Systems Conference.

[9]  Timothy Wang,et al.  A graphical environment to express the semantics of control systems , 2011, 1108.4048.

[10]  E Feron,et al.  From Control Systems to Control Software , 2010, IEEE Control Systems.

[11]  Serdar Iplikci,et al.  A comparative study on a novel model‐based PID tuning and control mechanism for nonlinear systems , 2010 .

[12]  Ming-Chang Lee,et al.  Comparison of Support Vector Machine and Back Propagation Neural Network in Evaluating the Enterprise Financial Distress , 2010, ArXiv.

[13]  Jindong Chen,et al.  Dynamic Modeling of Biotechnical Process Based on Online Support Vector Machine , 2009, J. Comput..

[14]  Ping Li,et al.  Intelligent PID controller design with adaptive criterion adjustment via least squares support vector machine , 2009, 2009 Chinese Control and Decision Conference.

[15]  Du Zhiyong,et al.  Nonlinear Generalized Predictive Control Based on Online SVR , 2008, 2008 Second International Symposium on Intelligent Information Technology Application.

[16]  Zhao Shengdun,et al.  Adaptive PID controller based on online LSSVM identification , 2008, 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[17]  C. Baier,et al.  Principles of model checking , 2008 .

[18]  Yaonan Wang,et al.  Adaptive Inverse Control of Excitation System with Actuator Uncertainty , 2008, Neural Processing Letters.

[19]  Peter Csaba Ölveczky,et al.  The Maude Formal Tool Environment , 2007, CALCO.

[20]  Mehmet Önder Efe,et al.  Discrete time fuzzy sliding mode control of a biochemical process , 2007 .

[21]  Serdar Iplikci,et al.  Online trained support vector machines‐based generalized predictive control of non‐linear systems , 2006 .

[22]  Serdar Iplikci,et al.  Support vector machines‐based generalized predictive control , 2006 .

[23]  Jianqiang Yi,et al.  Adaptive Inverse Control System Based on Least Squares Support Vector Machines , 2005, ISNN.

[24]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[25]  James Theiler,et al.  Accurate On-line Support Vector Regression , 2003, Neural Computation.

[26]  Mario Martín,et al.  On-Line Support Vector Machine Regression , 2002, ECML.

[27]  Heikki Mannila,et al.  Machine Learning: ECML 2002: 13th European Conference on Machine Learning, Helsinki, Finland, August 19-23, 2002. Proceedings , 2002 .

[28]  Tong Zhang An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods , 2001, AI Mag..

[29]  Nacer K. M'Sirdi,et al.  Neural hybrid control of manipulators, stability analysis , 2001, Robotica.

[30]  Alexander J. Smola,et al.  Support Vector Regression Machines , 1996, NIPS.

[31]  Alexander J. Smola,et al.  Support Vector Method for Function Approximation, Regression Estimation and Signal Processing , 1996, NIPS.

[32]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[33]  Jie Chen,et al.  Fault diagnosis in nonlinear dynamic systems via neural networks , 1994 .

[34]  Lee A. Feldkamp,et al.  Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks , 1994, IEEE Trans. Neural Networks.

[35]  Lyle H. Ungar,et al.  A bioreactor benchmark for adaptive network-based process control , 1990 .

[36]  Richard S. Sutton,et al.  Neural networks for control , 1990 .

[37]  Hossam Faris,et al.  A Comparison between Regression, Artificial Neural Networks and Support Vector Machines for Predicting Stock Market Index , 2015 .

[38]  H. Jin Kim,et al.  Model predictive flight control using adaptive support vector regression , 2010, Neurocomputing.

[39]  Youxian Sun,et al.  Online SVM regression algorithm-based adaptive inverse control , 2007, Neurocomputing.

[40]  Eduardo D. Sontag,et al.  Neural Networks for Control , 1993 .