Convergence rates for persistence diagram estimation in topological data analysis

Computational topology has recently seen an important development toward data analysis, giving birth to Topological Data Analysis. Persistent homology appears as a fundamental tool in this field. We show that the use of persistent homology can be naturally considered in general statistical frameworks . We establish convergence rates of persistence diagrams associated to data randomly sampled from any compact metric space to a well defined limit diagram encoding the topological features of the support of the measure from which the data have been sampled. Our approach relies on a recent and deep stability result for persistence that allows to relate our problem to support estimation problems (with respect to the Gromov-Hausdorff distance). Some numerical experiments are performed in various contexts to illustrate our results.

[1]  Leonidas J. Guibas,et al.  Persistence-Based Clustering in Riemannian Manifolds , 2013, JACM.

[2]  Steve Oudot,et al.  Persistence stability for geometric complexes , 2012, ArXiv.

[3]  R. Ho Algebraic Topology , 2022 .

[4]  Frédéric Chazal,et al.  Robust Topological Inference: Distance To a Measure and Kernel Distance , 2014, J. Mach. Learn. Res..

[5]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[6]  A. González,et al.  Set estimation: another bridge between statistics and geometry , 2009 .

[7]  Sebastian Thrun,et al.  SCAPE: shape completion and animation of people , 2005, SIGGRAPH '05.

[8]  Alexandre B. Tsybakov,et al.  Introduction to Nonparametric Estimation , 2008, Springer series in statistics.

[9]  P. Massart,et al.  Concentration inequalities and model selection , 2007 .

[10]  D. Ringach,et al.  Topological analysis of population activity in visual cortex. , 2008, Journal of vision.

[11]  Larry A. Wasserman,et al.  Manifold Estimation and Singular Deconvolution Under Hausdorff Loss , 2011, ArXiv.

[12]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[13]  Peter Bubenik,et al.  A statistical approach to persistent homology , 2006, math/0607634.

[14]  Sivaraman Balakrishnan,et al.  Statistical Inference For Persistent Homology , 2013, arXiv.org.

[15]  A. Cuevas,et al.  On Statistical Properties of Sets Fulfilling Rolling-Type Conditions , 2011, Advances in Applied Probability.

[16]  Vin de Silva,et al.  HOMOLOGICAL SENSOR NETWORKS , 2005 .

[17]  Frédéric Chazal,et al.  Geometric Inference for Probability Measures , 2011, Found. Comput. Math..

[18]  S. Mukherjee,et al.  Probability measures on the space of persistence diagrams , 2011 .

[19]  Frédéric Chazal,et al.  Subsampling Methods for Persistent Homology , 2014, ICML.

[20]  A. Cuevas,et al.  A plug-in approach to support estimation , 1997 .

[21]  H. P. Annales de l'Institut Henri Poincaré , 1931, Nature.

[22]  Frédéric Chazal,et al.  Optimal rates of convergence for persistence diagrams in Topological Data Analysis , 2013, ArXiv.

[23]  Leonidas J. Guibas,et al.  Proximity of persistence modules and their diagrams , 2009, SCG '09.

[24]  Sivaraman Balakrishnan,et al.  Confidence sets for persistence diagrams , 2013, The Annals of Statistics.

[25]  Shmuel Weinberger,et al.  The Complexity of Some Topological Inference Problems , 2014, Found. Comput. Math..

[26]  Herbert Edelsbrunner,et al.  The union of balls and its dual shape , 1993, SCG '93.

[27]  Robert D. Nowak,et al.  Adaptive Hausdorff Estimation of Density Level Sets , 2009, COLT.

[28]  Steve Oudot,et al.  The Structure and Stability of Persistence Modules , 2012, Springer Briefs in Mathematics.

[29]  A. Cuevas,et al.  On boundary estimation , 2004, Advances in Applied Probability.

[30]  Stephen Smale,et al.  Finding the Homology of Submanifolds with High Confidence from Random Samples , 2008, Discret. Comput. Geom..

[31]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[32]  L. Dümbgen,et al.  RATES OF CONVERGENCE FOR RANDOM APPROXIMATIONS OF CONVEX SETS , 1996 .

[33]  Frédéric Chazal,et al.  Deconvolution for the Wasserstein Metric and Geometric Inference , 2011, GSI.

[34]  Ulrich Bauer,et al.  Persistent Homology meets Statistical Inference - A Case Study: Detecting Modes of One-Dimensional Signals , 2014, ArXiv.

[35]  A. Tsybakov,et al.  Minimax theory of image reconstruction , 1993 .

[36]  E. D. Vito,et al.  Learning Sets with Separating Kernels , 2012, 1204.3573.

[37]  Larry A. Wasserman,et al.  Minimax Manifold Estimation , 2010, J. Mach. Learn. Res..

[38]  Leonidas J. Guibas,et al.  BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm250 Structural bioinformatics Persistent voids: a new structural metric for membrane fusion , 2022 .

[39]  Peter Bubenik,et al.  Statistical topology using persistence landscapes , 2012, ArXiv.

[40]  A. P. Korostelev,et al.  MiniMax Methods for Image Reconstruction , 1993 .

[41]  A. Tsybakov,et al.  Efficient Estimation of Monotone Boundaries , 1995 .

[42]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[43]  Jianzhong Wang,et al.  Geometric Structure of High-Dimensional Data and Dimensionality Reduction , 2012 .

[44]  Sivaraman Balakrishnan,et al.  Minimax rates for homology inference , 2011, AISTATS.

[45]  Bruno Pelletier,et al.  Asymptotic Normality in Density Support Estimation , 2009 .

[46]  L. Devroye,et al.  Detection of Abnormal Behavior Via Nonparametric Estimation of the Support , 1980 .

[47]  A. Meister Deconvolution Problems in Nonparametric Statistics , 2009 .

[48]  Alberto Rodríguez Casal,et al.  Set estimation under convexity type assumptions , 2007 .

[49]  Stephen Smale,et al.  A Topological View of Unsupervised Learning from Noisy Data , 2011, SIAM J. Comput..

[50]  Leonidas J. Guibas,et al.  Gromov‐Hausdorff Stable Signatures for Shapes using Persistence , 2009, Comput. Graph. Forum.

[51]  Bin Yu Assouad, Fano, and Le Cam , 1997 .

[52]  A. Tsybakov On nonparametric estimation of density level sets , 1997 .

[53]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[54]  D. Burago,et al.  A Course in Metric Geometry , 2001 .