Certain sufficient conditions for a subclass of analytic functions involving Hohlov operator

Making use of the Hohlov operator, the authors obtain inclusion relations between the classes of certain normalized analytic functions. Relevant connections of our work with the earlier works are pointed out.

[1]  Mohamed Kamal Aouf,et al.  ON CERTAIN SUBCLASSES OF UNIVALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS , 1994 .

[2]  Hari M. Srivastava,et al.  Generalized hypergeometric functions associated with k-uniformly convex functions , 2002 .

[3]  Vikramaditya Singh On a class of univalent functions , 2000 .

[4]  Hari M. Srivastava,et al.  Hypergeometric functions in the parabolic starlike and uniformly convex domains , 2007 .

[5]  B. C. Carlson,et al.  Starlike and Prestarlike Hypergeometric Functions , 1984 .

[6]  Ekrem Kadioglu,et al.  On subclass of univalent functions with negative coefficients , 2003, Appl. Math. Comput..

[7]  T. N. Shanmugam,et al.  Hypergeometric functions in the geometric function theory , 2007, Appl. Math. Comput..

[8]  Stanisława Kanas,et al.  Conic regions and k -uniform convexity , 1999 .

[9]  L. Debranges A proof of the Bieberbach conjecture , 1985 .

[10]  Hari M. Srivastava,et al.  Linear operators associated with k-uniformly convex functions , 2000 .

[11]  S. Ponnusamy,et al.  Duality for hadamard products applied to certain integral transforms , 1997 .

[12]  A. Goodman,et al.  On uniformly convex functions , 1991 .

[13]  K. S. Padmanabhan On a certain class of functions whose derivatives have a positive real part in the unit disc , 1970 .

[14]  M. Obradovic,et al.  A class of univalent functions , 1973 .

[15]  Hari M. Srivastava,et al.  Applications of fractional calculus to parabolic starlike and uniformly convex functions , 2000 .