A review on phase field modeling of martensitic phase transformation

In the last few decades, the phase field method has shown tremendous capabilities of predicting microstructure evolutions at the mesoscale scale. This method was widely used for modeling martensitic phase transformation, where the displacive character was a challenging problem for the counterpart sharp interface approach. Martensitic phase transformation, which is an invariant plane stress twinning, drives a myriad of phase transition phenomena of paramount importance to many structural applications. This article provides a literature review of the past phase field modeling studies used to capture the formation and growth of martensite.

[1]  Long-Qing Chen,et al.  Computer simulation of 3-D grain growth using a phase-field model , 2002 .

[2]  Yunzhi Wang,et al.  Phase field modeling of defects and deformation , 2010 .

[3]  T. Takaki,et al.  Elastoplastic phase-field simulation of self- and plastic accommodations in Cubic→tetragonalCubic→tetragonal martensitic transformation , 2008 .

[4]  A. G. Khachaturi︠a︡n Theory of structural transformations in solids , 1983 .

[5]  T. Sakuma,et al.  Computer simulation of the microstructural evolution during the diffusionless cubic-to-tetragonal transition in the system ZrO2–Y2O3 , 1998 .

[6]  Yoshihiro Yamazaki,et al.  Kinetics of cubic to tetragonal transformation under external field by the time-dependent Ginzburg-Landau approach , 2000 .

[7]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[8]  Yongmei M Jin,et al.  Three-dimensional phase field model of proper martensitic transformation , 2001 .

[9]  Danan Fan,et al.  Numerical Simulation of Zener Pinning with Growing Second-Phase Particles , 2005 .

[10]  Landau theory for shape memory polycrystals , 2003, cond-mat/0309206.

[11]  Gustav Amberg,et al.  Phase-field simulations of non-isothermal binary alloy solidification , 2001 .

[12]  V. Levitas,et al.  Surface tension and energy in multivariant martensitic transformations: phase-field theory, simulations, and model of coherent interface. , 2010, Physical review letters.

[13]  David R. Clarke,et al.  The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends , 2009 .

[14]  V. Levitas,et al.  Finite element modeling of dynamics of martensitic phase transitions , 2008 .

[15]  M. Mayo,et al.  Thermodynamics of the tetragonal-to-monoclinic phase transformation in fine and nanocrystalline yttria-stabilized zirconia powders , 2003 .

[16]  J. Chevalier,et al.  Martensitic transformation in zirconia: Part I. Nanometer scale prediction and measurement of transformation induced relief , 2004, 1804.01461.

[17]  A. Khachaturyan,et al.  Phase field microelasticity modeling of heterogeneous nucleation and growth in martensitic alloys , 2007 .

[18]  Yunzhi Wang,et al.  Multi-scale phase field approach to martensitic transformations , 2006 .

[19]  P. Anderson,et al.  Symmetry Considerations on Martensitic Transformations: "Ferroelectric" Metals? , 1965 .

[20]  A. F. Devonshire CIX. Theory of barium titanate—Part II , 1951 .

[21]  Yunzhi Wang,et al.  Three-dimensional field model and computer modeling of martensitic transformations , 1997 .

[22]  V. Levin,et al.  Displacive phase transitions at large strains: phase-field theory and simulations. , 2009, Physical review letters.

[23]  Louis G. Birta,et al.  Modelling and Simulation , 2013, Simulation Foundations, Methods and Applications.

[24]  A. F. Devonshire Theory of ferroelectrics , 1954 .

[25]  A. Khachaturyan,et al.  Three-dimensional phase field model and simulation of cubic ? tetragonal martensitic transformation in polycrystals , 2002 .

[26]  A. Khachaturyan,et al.  Three-dimensional phase field model of low-symmetry martensitic transformation in polycrystal: simulation of ζ′2 martensite in AuCd alloys , 2001 .

[27]  Dong-Wook Lee,et al.  Athermal resistance to interface motion in the phase-field theory of microstructure evolution. , 2007, Physical review letters.

[28]  T. Koyama,et al.  Phase-Field Simulation of Microstructure Changes in Ni2MnGa Ferromagnetic Alloy Under External Stress and Magnetic Fields , 2003 .

[29]  Dennis R. Preston,et al.  Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. III. Alternative potentials, critical nuclei, kink solutions, and dislocation theory , 2003 .

[30]  Danan Fan,et al.  Computer Simulation of Twin Formation during the Displacive c→t′ Phase Transformation in the Zirconia‐Yttria System , 1995 .

[31]  Heike Emmerich,et al.  The Diffuse Interface Approach in Materials Science: Thermodynamic Concepts and Applications of Phase-Field Models , 2003 .

[32]  L. R. Francis Rose,et al.  The martensitic transformation in ceramics — its role in transformation toughening , 2002 .

[33]  W. Z. Zhu Grain size dependence of the transformation temperature of tetragonal to monoclinic phase in ZrO2(Y2O3) ceramics , 1996 .

[34]  V. Levitas,et al.  Surface-induced phase transformations: multiple scale and mechanics effects and morphological transitions. , 2011, Physical review letters.

[35]  Mark F. Horstemeyer,et al.  Effect of the Compositional Strain on the Diffusive Interface Thickness and on the Phase Transformation in a Phase-Field Model for Binary Alloys , 2011 .

[36]  Dean L. Preston,et al.  Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. I. Austenite↔martensite , 2002 .

[37]  Mark F. Horstemeyer,et al.  Effects of internal stresses and intermediate phases on the coarsening of coherent precipitates: A phase-field study , 2012 .

[38]  G. B. Olson,et al.  Dislocation Theory of Martensitic Transformations , 1986 .

[39]  Yunzhi Wang,et al.  Three-dimensional phase field model and simulation of martensitic transformation in multilayer systems under applied stresses , 2000 .

[40]  L. Chen,et al.  Phase-field model of domain structures in ferroelectric thin films , 2001 .

[41]  W. Stobbs,et al.  A simple order parameter for reversible martensitic transformations , 1979 .

[42]  Chen,et al.  Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics. , 1994, Physical review. B, Condensed matter.

[43]  V. Levitas,et al.  Interface Propagation and Microstructure Evolution in Phase Field Models of Stress-Induced Martensitic Phase Transformations , 2010 .

[44]  C. Shen,et al.  Coherent Precipitation — Phase Field Method , 2005 .

[45]  B. Blanpain,et al.  An introduction to phase-field modeling of microstructure evolution , 2008 .

[46]  Heike Emmerich,et al.  Advances of and by phase-field modelling in condensed-matter physics , 2008 .

[47]  Yunzhi Wang,et al.  Microstructural Development of Coherent Tetragonal Precipitates in Magnesium‐Partially‐Stabilized Zirconia: A Computer Simulation , 1995 .

[48]  Christoph Beckermann,et al.  Simulation of convection and ripening in a binary alloy mush using the phase-field method , 1999 .

[49]  T. Koyama,et al.  Simulation of hexagonal–orthorhombic phase transformation in polycrystals , 2007 .

[50]  K. Binder Time-Dependent Ginzburg-Landau Theory of Nonequilibrium Relaxation , 1973 .

[51]  M. Horstemeyer,et al.  Investigating the Effects of Grain Boundary Energy Anisotropy and Second-Phase Particles on Grain Growth Using a Phase-Field Model , 2011 .

[52]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[53]  David E. Tanner,et al.  ISODISPLACE: a web-based tool for exploring structural distortions , 2006 .

[54]  J. Krumhansl,et al.  Nonlinear and nonlocal continuum model of transformation precursors in martensites , 1988 .

[55]  B. Moran,et al.  Homogeneous nucleation of a solid-solid dilatational phase transformation , 1996 .

[56]  K. Oh,et al.  Cubic to tetragonal martensitic transformation in a thin film elastically constrained by a substrate , 2003 .

[57]  M. Fabrizio,et al.  Hysteresis and phase transitions for one-dimensional and three-dimensional models in shape memory alloys , 2010 .

[58]  Donald M. Anderson,et al.  A phase-field model of solidification with convection , 2000 .

[59]  Yunzhi Wang,et al.  EFFECT OF ELASTIC INTERACTION ON THE FORMATION OF A COMPLEX MULTI-DOMAIN MICROSTRUCTURAL PATTERN DURING A COHERENT HEXAGONAL TO ORTHORHOMBIC TRANSFORMATION , 1999 .

[60]  Long-Qing Chen,et al.  Computer simulation of structural transformations during precipitation of an ordered intermetallic phase , 1991 .

[61]  J. Szpunar,et al.  Tetragonal phase stability in ZrO2 film formed on zirconium alloys and its effects on corrosion resistance , 2007 .

[62]  S. Felicelli,et al.  Comparison of Cellular Automaton and Phase Field Models to Simulate Dendrite Growth in Hexagonal Crystals , 2012 .

[63]  Turab Lookman,et al.  Elastic deformation of polycrystals. , 2003, Physical review letters.

[64]  A. R. Bishop,et al.  Ferroelastic dynamics and strain compatibility , 2003 .

[65]  R. Kobayashi Modeling and numerical simulations of dendritic crystal growth , 1993 .

[66]  R. Cowley,et al.  Structural phase transitions I. Landau theory , 1980 .

[67]  I. Steinbach Phase-field models in materials science , 2009 .

[68]  Yu U. Wang,et al.  The effects of free surfaces on martensite microstructures: 3D phase field microelasticity simulation study , 2004 .

[69]  A. Karma,et al.  Regular Article: Modeling Melt Convection in Phase-Field Simulations of Solidification , 1999 .

[70]  Mohsen Asle Zaeem,et al.  Finite element method for conserved phase fields: Stress-mediated diffusional phase transformation , 2010, J. Comput. Phys..

[71]  Jonathan A. Dantzig,et al.  MULTISCALE MODELING OF SOLIDIFICATION: PHASE-FIELD METHODS TO ADAPTIVE MESH REFINEMENT , 2005 .

[72]  Biao Wang,et al.  Phase field simulation of heterogeneous cubic → tetragonal martensite nucleation , 2013 .

[73]  Long-Qing Chen,et al.  Coarsening of ordered intermetallic precipitates with coherency stress , 2002 .

[74]  Akira Onuki,et al.  Ginzburg-Landau Approach to Elastic Effects in the Phase Separation of Solids , 1989 .

[75]  R. Garvie Thermodynamic analysis of the tetragonal to monoclinic transformation in a constrained zirconia microcrystal , 1985 .

[76]  A. Karma,et al.  Phase-Field Simulation of Solidification , 2002 .

[77]  H. Thomas,et al.  Interaction of Elastic Strain with the Structural Transition of Strontium Titanate , 1970 .

[78]  Wheeler,et al.  Phase-field model for isothermal phase transitions in binary alloys. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[79]  A. Saxena,et al.  Hierarchical pattern formation in elastic materials , 1997 .

[80]  I. Steinbach,et al.  A phase field concept for multiphase systems , 1996 .

[81]  Long-Qing Chen,et al.  Shape of a rhombohedral coherent Ti11Ni14 precipitate in a cubic matrix and its growth and dissolution during constrained aging , 1997 .

[82]  Dean L. Preston,et al.  Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. II. Multivariant phase transformations and stress space analysis , 2002 .

[83]  F. Falk,et al.  One-dimensional model of shape memory alloys , 1983 .

[84]  Three-dimensional elastic compatibility and varieties of twins in martensites. , 2000, Physical review letters.

[85]  O. Shchyglo,et al.  Martensitic phase transformations in Ni–Ti-based shape memory alloys: The Landau theory , 2012 .

[86]  N. Zhou,et al.  Study of Thermoelastic Martensitic Transformations Using a Phase-Field Model , 2011 .

[87]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[88]  K. Oh,et al.  Computer Simulation of Martensitic Transformation in Constrained Films , 2002 .

[89]  S. Shi,et al.  Elastoplastic phase field model for microstructure evolution , 2005 .

[90]  J. Krumhansl,et al.  Twin Boundaries in Ferroelastic Media without Interface Dislocations , 1984 .

[91]  S. Mesarovic,et al.  Morphological instabilities in thin films: Evolution maps , 2011 .

[92]  K. Parlinski Secondary order parameters in the structural phase transitions , 1985 .

[93]  Frédéric Barlat,et al.  Continuum Scale Simulation of Engineering Materials Fundamentals - Microstructures - Process Applications , 2004 .

[94]  A. F. Devonshire XCVI. Theory of barium titanate , 1949 .

[95]  L. Chen,et al.  Phase-field simulation of domain structure evolution during a coherent hexagonal-to-orthorhombic transformation , 2000 .

[96]  D. Ter Haar,et al.  Collected Papers of L. D. Landau , 1965 .