Non-wrapping order crossover: an order preserving crossover operator that respects absolute position

In this paper, we introduce a new crossover operator for the permutation representation of a GA. This new operator---Non-Wrapping Order Crossover (NWOX)---is a variation of the well-known Order Crossover (OX) operator. It strongly preserves relative order, as does the original OX, but also respects the absolute positions within the parent permutations. This crossover operator is experimentally compared to several other permutation crossover operators on an NP-Hard problem known as weighted tardiness scheduling with sequence-dependent setups. A GA using this NWOX operator finds new best known solutions for several benchmark problem instances and proves to be superior to the previous best performing metaheuristic for the problem.

[1]  L. Darrell Whitley,et al.  The Traveling Salesrep Problem, Edge Assembly Crossover, and 2-opt , 1998, PPSN.

[2]  Toby Walsh Depth-bounded Discrepancy Search , 1997, IJCAI.

[3]  Stephen F. Smith,et al.  Modeling GA Performance for Control Parameter Optimization , 2000, GECCO.

[4]  Jian-Hung Chen,et al.  A GA-based systematic reasoning approach for solving traveling salesman problems using an orthogonal array crossover , 2000, Proceedings Fourth International Conference/Exhibition on High Performance Computing in the Asia-Pacific Region.

[5]  Thomas E. Morton,et al.  Heuristic scheduling systems : with applications to production systems and project management , 1993 .

[6]  Stephen F. Smith,et al.  Enhancing Stochastic Search Performance by Value-Biased Randomization of Heuristics , 2005, J. Heuristics.

[7]  Riccardo Poli,et al.  Topological crossover for the permutation representation , 2005, GECCO '05.

[8]  Richard E. Korf,et al.  Improved Limited Discrepancy Search , 1996, AAAI/IAAI, Vol. 1.

[9]  David E. Goldberg,et al.  AllelesLociand the Traveling Salesman Problem , 1985, ICGA.

[10]  Lawrence Davis,et al.  Applying Adaptive Algorithms to Epistatic Domains , 1985, IJCAI.

[11]  D. J. Smith,et al.  A Study of Permutation Crossover Operators on the Traveling Salesman Problem , 1987, ICGA.

[12]  Amitava Bagchi,et al.  Graph Search Methods for Non-Order-Preserving Evaluation Functions: Applications to Job Sequencing Problems , 1996, Artif. Intell..

[13]  Michael Pinedo,et al.  BPSS: A Scheduling Support System for the Packaging Industry , 1993, Oper. Res..

[14]  Mark S. Fox,et al.  Factory Model and Test Data Descriptions: OPIS Experiments , 1990 .

[15]  Michael Pinedo,et al.  A heuristic to minimize the total weighted tardiness with sequence-dependent setups , 1997 .

[16]  David E. Goldberg,et al.  Alleles, loci and the traveling salesman problem , 1985 .

[17]  James E. Baker,et al.  Reducing Bias and Inefficienry in the Selection Algorithm , 1987, ICGA.

[18]  Darrell Whitley,et al.  A comparative study of genetic sequencing operators , 1991 .