Electrochemical-Thermal Modeling to Evaluate Battery Thermal Management Strategies I. Side Cooling

[1]  J. Newman,et al.  Thermal Modeling of the Lithium/Polymer Battery .1. Discharge Behavior of a Single-Cell , 1995 .

[2]  Chaoyang Wang,et al.  Thermal‐Electrochemical Modeling of Battery Systems , 2000 .

[3]  Shriram Santhanagopalan,et al.  Multi-Domain Modeling of Lithium-Ion Batteries Encompassing Multi-Physics in Varied Length Scales , 2011 .

[4]  James W. Evans,et al.  Three‐Dimensional Thermal Modeling of Lithium‐Polymer Batteries under Galvanostatic Discharge and Dynamic Power Profile , 1994 .

[5]  Chaoyang Wang,et al.  Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles , 2006 .

[6]  U. Kim,et al.  Modeling for the scale-up of a lithium-ion polymer battery , 2009 .

[7]  T. Fuller,et al.  A Critical Review of Thermal Issues in Lithium-Ion Batteries , 2011 .

[8]  James W. Evans,et al.  Thermal Analysis of Lithium‐Ion Batteries , 1996 .

[9]  C. M. Shepherd Design of Primary and Secondary Cells II . An Equation Describing Battery Discharge , 1965 .

[10]  R. Shah,et al.  Handbook of single-phase convective heat transfer , 1987 .

[11]  S. Pannala,et al.  A new open computational framework for highly-resolved coupled three-dimensional multiphysics simulations of Li-ion cells , 2014 .

[12]  U. Kim,et al.  Effect of electrode configuration on the thermal behavior of a lithium-polymer battery , 2008 .

[13]  S. C. Chen,et al.  Thermal analysis of lithium-ion batteries , 2005 .

[14]  James W. Evans,et al.  Thermal analysis of lithium polymer electrolyte batteries by a two dimensional model—thermal behaviour and design optimization , 1994 .

[15]  T. Fuller,et al.  Temperature-dependent electrochemical heat generation in a commercial lithium-ion battery , 2014 .

[16]  Chaoyang Wang,et al.  Analysis of Electrochemical and Thermal Behavior of Li-Ion Cells , 2003 .

[17]  J. Tarascon,et al.  Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells , 1996 .

[18]  Ralph E. White,et al.  Mathematical modeling of lithium-ion and nickel battery systems , 2002 .

[19]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[20]  James W. Evans,et al.  Electrochemical‐Thermal Model of Lithium Polymer Batteries , 2000 .

[21]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .

[22]  J. Selman,et al.  Thermal modeling and design considerations of lithium-ion batteries , 1999 .

[23]  T. Araki,et al.  Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles , 2006 .

[24]  C. Wan,et al.  Thermal Analysis of Spirally Wound Lithium Batteries , 2006 .

[25]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[26]  James W. Evans,et al.  Heat Transfer Phenomena in Lithium/Polymer‐Electrolyte Batteries for Electric Vehicle Application , 1993 .

[27]  Ralph E. White,et al.  Thermal Model for a Li-Ion Cell , 2008 .

[28]  M. Verbrugge Three‐dimensionai temperature and current distribution in a battery module , 1995 .

[29]  J. Newman,et al.  Thermal Modeling of Porous Insertion Electrodes , 2003 .

[30]  John Newman,et al.  A General Energy Balance for Battery Systems , 1984 .

[31]  J. Newman,et al.  Thermal modeling of the lithium/polymer battery. II: Temperature profiles in a cell stack , 1995 .

[32]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[33]  Binggang Cao,et al.  Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application , 2010 .

[34]  Ralph E. White,et al.  Influence of Some Design Variables on the Thermal Behavior of a Lithium‐Ion Cell , 1999 .