Occurrence of regular, chaotic and hyperchaotic behavior in a family of modified Rossler hyperchaotic systems

Abstract In this paper, we demonstrate that it is possible to control the hyperchaos into the Rossler hyperchaotic system (RHS) by linear feedback of own signals. After introducing of the parameter “ b ” in the z -equation ( b → b + b 1 x ( t )+ b 2 y ( t )+ b 3 z ( t )+ b 4 w ( t )), we study how the global dynamics can be altered in a desired direction ( b n are considered as free parameters). We make a detailed bifurcation investigation of the modified Rossler hyperchaotic systems by varying the parameters b n . Finally, we calculate the Lyapunov exponents and the information dimension, where the regular, chaotic and hyperchaotic motion of modified RHS exist.

[1]  A. Tamasevicius,et al.  Hyperchaos in coupled Colpitts oscillators , 2003 .

[2]  J. Yorke,et al.  Chaos: An Introduction to Dynamical Systems , 1997 .

[3]  M. Rosenstein,et al.  A practical method for calculating largest Lyapunov exponents from small data sets , 1993 .

[4]  Ralf Eichhorn,et al.  Transformation invariance of Lyapunov exponents , 2001 .

[5]  J. Yorke,et al.  Dimension of chaotic attractors , 1982 .

[6]  Th. Meyer,et al.  HYPERCHAOS IN THE GENERALIZED ROSSLER SYSTEM , 1997, chao-dyn/9906028.

[7]  T. Kapitaniak,et al.  Transition to hyperchaos in chaotically forced coupled oscillators. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  Ming-Jyi Jang,et al.  Sliding mode control of hyperchaos in Rössler systems , 2002 .

[9]  C. Diks Nonlinear time series analysis , 1999 .

[10]  Chien-Chong Chen,et al.  Rich dynamics in self-interacting Lorenz systems , 1994 .

[11]  Kapitaniak,et al.  Chaos-hyperchaos transition , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  L. Tsimring,et al.  The analysis of observed chaotic data in physical systems , 1993 .

[13]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[14]  A. Tamasevicius,et al.  Hyperchaos in Dynamical Systems with a Monoactive Degree of Freedom , 1998 .

[15]  K. Stefanski Modelling chaos and hyperchaos with 3-D maps , 1998 .

[16]  O. Rössler An equation for hyperchaos , 1979 .

[17]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .