The Omniscient Garbage Collector: A Resource Analysis Framework
暂无分享,去创建一个
[1] Raheel Ahmad,et al. The π-Calculus: A theory of mobile processes , 2008, Scalable Comput. Pract. Exp..
[2] Rupak Majumdar,et al. A Theory of Name Boundedness , 2013, CONCUR.
[3] Gian Luigi Ferrari,et al. Nominal Automata for Resource Usage Control , 2012, CIAA.
[4] Tommy R. Jensen,et al. Graph Coloring Problems , 1994 .
[5] Raymond R. Devillers,et al. A Petri Net Interpretation of Open Reconfigurable Systems , 2013, Fundam. Informaticae.
[6] Roberto M. Amadio,et al. On Decidability of the Control Reachability Problem in the Asynchronous pi-Calculus , 2002, Nord. J. Comput..
[7] Silvano Dal-Zilio,et al. Resource control for synchronous cooperative threads , 2006, Theor. Comput. Sci..
[8] Naoki Kobayashi,et al. Resource Usage Analysis for the Pi-Calculus , 2006, VMCAI.
[9] Davide Sangiorgi,et al. The Pi-Calculus - a theory of mobile processes , 2001 .
[10] Andrew D. Gordon,et al. Notes on Nominal Calculi for Security and Mobility , 2000, FOSAD.
[11] Marco Pistore,et al. Verifying Mobile Processes in the HAL Environment , 1998, CAV.
[12] Marco Pistore,et al. Checking Bisimilarity for Finitary pi-Calculus , 1995, CONCUR.
[13] Orna Grumberg,et al. Variable Automata over Infinite Alphabets , 2010, LATA.
[14] Fernando Rosa-Velardo,et al. Decidability Problems in Petri Nets with Names and Replication , 2010, Fundam. Informaticae.
[15] Gregory J. Chaitin. Register allocation and spilling via graph coloring (with retrospective) , 1982 .