Evolutionary Population Dynamics and Multi-Objective Optimisation Problems

Problems for which many objective functions are to be simultaneously optimised are widely encountered in science and industry. These multiobjective problems have also been the subject of intensive investigation and development recently for metaheuristic search algorithms such as ant colony optimisation, particle swarm optimisation and extremal optimisation. In this chapter, a unifying framework called evolutionary programming dynamics (EPD) is examined. Using underlying concepts of self organised criticality and evolutionary programming, it can be applied to many optimisation algorithms as a controlling metaheuristic, to improve performance and results. We show this to be effective for both continuous and combinatorial problems.

[1]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[2]  Stefan Boettcher,et al.  Extremal Optimization: an Evolutionary Local-Search Algorithm , 2002, ArXiv.

[3]  Jürgen Branke,et al.  About Selecting the Personal Best in Multi-Objective Particle Swarm Optimization , 2006, PPSN.

[4]  E. Antonsson,et al.  Compensation and Weights for Trade-offs in Engineering Design: Beyond the Weighted Sum , 2005 .

[5]  I. C. Parmee,et al.  Evolutionary Design and Manufacture , 2000 .

[6]  Dr. Zbigniew Michalewicz,et al.  How to Solve It: Modern Heuristics , 2004 .

[7]  K. Mellanby How Nature works , 1978, Nature.

[8]  Bak,et al.  Punctuated equilibrium and criticality in a simple model of evolution. , 1993, Physical review letters.

[9]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[10]  Kalyanmoy Deb,et al.  Evaluating Evolutionary Multi-objective Optimization Algorithms using Running Performance Metrics , 2002, SEAL.

[11]  Daniel Angus,et al.  Crowding Population-based Ant Colony Optimisation for the Multi-objective Travelling Salesman Problem , 2007, 2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making.

[12]  Jonathan E. Fieldsend,et al.  A MOPSO Algorithm Based Exclusively on Pareto Dominance Concepts , 2005, EMO.

[13]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[14]  C.A. Coello Coello,et al.  MOPSO: a proposal for multiple objective particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[15]  Oscar Cordón,et al.  An Empirical Analysis of Multiple Objective Ant Colony Optimization Algorithms for the Bi-criteria TSP , 2004, ANTS Workshop.

[16]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[17]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[18]  Thomas Stützle,et al.  On the Design of ACO for the Biobjective Quadratic Assignment Problem , 2004, ANTS Workshop.

[19]  Sanaz Mostaghim Multi-objective evolutionary algorithms: data structures, convergence, and diversity , 2004 .

[20]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[21]  Kalyanmoy Deb,et al.  Multi-Objective Evolutionary Optimization: Past, Present, and Future , 2000 .

[22]  Stefan Boettcher Extremal Optimization: Heuristics Via Co-Evolutionary Avalanches , 2000, Comput. Sci. Eng..

[23]  Marcus Randall Chapter 16 A Dynamic Optimisation Approach for Ant Colony Optimisation Using the Multidimensional Knapsack Problem , 2005, Recent Advances in Artificial Life.

[24]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms on Test Functions of Different Difficulty , 1999 .

[25]  Richard F. Hartl,et al.  Pareto Ant Colony Optimization: A Metaheuristic Approach to Multiobjective Portfolio Selection , 2004, Ann. Oper. Res..

[26]  Daniel Merkle,et al.  Bi-Criterion Optimization with Multi Colony Ant Algorithms , 2001, EMO.

[27]  J. Koski Defectiveness of weighting method in multicriterion optimization of structures , 1985 .

[28]  Martin Middendorf,et al.  A Population Based Approach for ACO , 2002, EvoWorkshops.

[29]  Hans-Georg Beyer,et al.  Self-Adaptation in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[30]  Andrew Lewis,et al.  An Evolutionary Programming Algorithm for Automatic Engineering Design , 2003, PPAM.

[31]  Ben Goertzel,et al.  Classifier ensemble based analysis of a genome-wide SNP dataset concerning Late-Onset Alzheimer Disease , 2009, 2009 8th IEEE International Conference on Cognitive Informatics.

[32]  C. Coello,et al.  Years of Evolutionary Multi-Objective Optimization : What Has Been Done and What Remains To Be Done , 2006 .

[33]  Russell C. Eberhart,et al.  Multiobjective optimization using dynamic neighborhood particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[34]  Carlos A. Coello Coello,et al.  Handling preferences in evolutionary multiobjective optimization: a survey , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[35]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[36]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[37]  C. A. Coello Coello The EMOO repository: a resource for doing research in evolutionary multiobjective optimization , 2006, IEEE Computational Intelligence Magazine.

[38]  R. W. Dobbins,et al.  Computational intelligence PC tools , 1996 .

[39]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[40]  Marco Dorigo,et al.  The ant colony optimization meta-heuristic , 1999 .

[41]  P. Siarry,et al.  Multiobjective Optimization: Principles and Case Studies , 2004 .

[42]  M Reyes Sierra,et al.  Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art , 2006 .

[43]  Andries Petrus Engelbrecht,et al.  Fundamentals of Computational Swarm Intelligence , 2005 .

[44]  Jürgen Branke,et al.  Multi-objective particle swarm optimization on computer grids , 2007, GECCO '07.

[45]  Martin Middendorf,et al.  Solving Multi-criteria Optimization Problems with Population-Based ACO , 2003, EMO.

[46]  Thomas Stützle,et al.  The Ant Colony Optimization Metaheuristic: Algorithms, Applications, and Advances , 2003 .

[47]  Mario Giacobini,et al.  Applications of Evolutionary Computing , 2009, Lecture Notes in Computer Science.

[48]  Stefan Boettcher,et al.  Extremal Optimization: Methods derived from Co-Evolution , 1999, GECCO.

[49]  Peter J. Fleming,et al.  Evolutionary many-objective optimisation: an exploratory analysis , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[50]  C. A. Coello Coello,et al.  A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques , 1999, Knowledge and Information Systems.

[51]  Andrew Lewis,et al.  Hybrid Particle Guide Selection Methods in Multi-Objective Particle Swarm Optimization , 2006, 2006 Second IEEE International Conference on e-Science and Grid Computing (e-Science'06).

[52]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[53]  Luca Maria Gambardella,et al.  MACS-VRPTW: a multiple ant colony system for vehicle routing problems with time windows , 1999 .

[54]  Andrew Lewis,et al.  An Extended Extremal Optimisation Model for Parallel Architectures , 2006, 2006 Second IEEE International Conference on e-Science and Grid Computing (e-Science'06).

[55]  Russell C. Eberhart,et al.  The particle swarm: social adaptation in information-processing systems , 1999 .

[56]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[57]  Joshua D. Knowles A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers , 2005, 5th International Conference on Intelligent Systems Design and Applications (ISDA'05).

[58]  Jonathan E. Fieldsend,et al.  A Multi-Objective Algorithm based upon Particle Swarm Optimisation, an Efficient Data Structure and , 2002 .

[59]  Jonathan G. Goldin,et al.  CADrx for GBM Brain Tumors: Predicting Treatment Response from Changes in Diffusion-Weighted MRI , 2009, Algorithms.

[60]  Stefan Boettcher,et al.  Optimization with Extremal Dynamics , 2000, Complex..

[61]  Francisco Herrera,et al.  A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP , 2007, Eur. J. Oper. Res..

[62]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[63]  Roberto L. Galski,et al.  Spacecraft thermal design with the Generalized Extremal Optimization Algorithm , 2007 .

[64]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[65]  Eduardo F. Morales,et al.  A Multiple objective Ant--Q algorithm for the design of water distribution irrigation networks , 1998 .

[66]  Jürgen Teich,et al.  Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO) , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[67]  A. Percus,et al.  Nature's Way of Optimizing , 1999, Artif. Intell..

[68]  M. N. Vrahatis,et al.  Particle swarm optimization method in multiobjective problems , 2002, SAC '02.

[69]  Jeffrey Horn,et al.  Handbook of evolutionary computation , 1997 .

[70]  In Schoenauer,et al.  Parallel Problem Solving from Nature , 1990, Lecture Notes in Computer Science.

[71]  E. Spencer From the Library , 1936, British Journal of Ophthalmology.