Symmetry Feature and Construction for the 3-Band Tight Framelets with Prescribed Properties

A construction approach for the 3-band tight wavelet frames by factorization of paraunitary matrix is developed. Several necessary constraints on the filter lengths and symmetric features of wavelet frames are investigated starting at the constructed paraunitary matrix. The matrix is a symmetric extension of the polyphase matrix corresponding to 3-band tight wavelet frames. Further, the parameterizations of 3-band tight wavelet frames with filter lengths are established. Examples of framelets with symmetry/antisymmetry and Sobolev exponent are computed by appropriately choosing the parameters in the scheme.

[1]  Qingtang Jiang,et al.  Parameterizations of Masks for Tight Affine Frames with Two Symmetric/Antisymmetric Generators , 2003, Adv. Comput. Math..

[2]  I. Daubechies,et al.  Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .

[3]  Truong Q. Nguyen,et al.  Linear phase paraunitary filter banks: theory, factorizations and designs , 1993, IEEE Trans. Signal Process..

[4]  Yan Huang,et al.  Parameterizations of masks for 3-band tight wavelet frames by symmetric extension of polyphase matrix , 2013, Appl. Math. Comput..

[5]  A. Ron,et al.  Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .

[6]  A. Ron,et al.  Affine systems inL2 (ℝd) II: Dual systems , 1997 .

[7]  Peter N. Heller,et al.  Theory of regular M-band wavelet bases , 1993, IEEE Trans. Signal Process..

[8]  Charles K. Chui,et al.  Compactly Supported Tight Affine Frames with Integer Dilations and Maximum Vanishing Moments , 2003, Adv. Comput. Math..

[9]  C. Chui,et al.  Compactly supported tight frames associated with refinable functions , 2000 .

[10]  Qingtang Jiang,et al.  Optimal multifilter banks: design, related symmetric extension transform, and application to image compression , 1999, IEEE Trans. Signal Process..

[11]  Aichi Chien,et al.  Frame based segmentation for medical images , 2011 .

[12]  I. Selesnick Smooth Wavelet Tight Frames with Zero Moments , 2001 .

[13]  Qingtang Jiang,et al.  Parameterization of m‐channel orthogonal multifilter banks , 2000, Adv. Comput. Math..

[14]  Lihong Cui,et al.  Construction for a class of interpolation multiscaling functions with dilation factor a>=3 , 2008, Comput. Math. Appl..

[15]  Petukhov,et al.  Constructive Approximation Symmetric Framelets , 2003 .

[16]  B. Han,et al.  SYMMETRIC MRA TIGHT WAVELET FRAMES WITH THREE GENERATORS AND HIGH VANISHING MOMENTS , 2004 .

[17]  R. Chan,et al.  A framelet algorithm for enhancing video stills , 2007 .

[18]  Jian-Feng Cai,et al.  A framelet-based image inpainting algorithm , 2008 .

[19]  L. Cui,et al.  m-Band orthogonal vector-valued multiwavelets for vector-valued signals , 2008 .

[20]  C. Chui,et al.  Compactly supported tight and sibling frames with maximum vanishing moments , 2001 .

[21]  I. Selesnick,et al.  Symmetric wavelet tight frames with two generators , 2004 .