Fabrication of Vertically Aligned Single‐Crystalline Boron Nanowire Arrays and Investigation of Their Field‐Emission Behavior

Aligned single crystalline boron nanowire arrays are formed by thermal carbon reduction. The SEM image shows an array of boron nanowires (ca. 5 mu m long) vertically aligned in high density on a Si substrate. These nanowires have a high enhancement factor, good emission stability, and can endure high current, which suggest they are an excellent candidate for field-emission applications.

[1]  Angel Rubio,et al.  New boron based nanostructured materials , 1999 .

[2]  R. Fowler,et al.  Electron Emission in Intense Electric Fields , 1928 .

[3]  David Emin,et al.  Icosahedral Boron‐Rich Solids , 1987 .

[4]  Hongjun Gao,et al.  Self-assembly and magnetic properties of cobalt nanoparticles , 2003 .

[5]  Fei Liu,et al.  Single Crystalline Boron Nanocones: Electric Transport and Field Emission Properties , 2007 .

[6]  D. Abraham,et al.  High resolution atomic force microscopy potentiometry , 1991 .

[7]  W. Wang,et al.  Featherlike boron nanowires arranged in large-scale arrays with multiple nanojunctions , 2002 .

[8]  Qing Yang,et al.  Aligned single crystal boron nanowires , 2003 .

[9]  Sishen Xie,et al.  Formation of Silver Nanoparticles and Self-Assembled Two-Dimensional Ordered Superlattice , 2001 .

[10]  L. Schlapbach,et al.  Characterization of thin film electron emitters by scanning anode field emission microscopy , 2001 .

[11]  Reinhard Nesper,et al.  Oxidic nanotubes and nanorods--anisotropic modules for a future nanotechnology. , 2002, Angewandte Chemie.

[12]  Judy Z. Wu,et al.  Self-assembled boron nanowire Y-junctions. , 2006, Nano letters.

[13]  Klaus Kern,et al.  Scanning field emission from patterned carbon nanotube films , 2000 .

[14]  H. W. Liu,et al.  High-density aligned carbon nanotubes with uniform diameters , 2003 .

[15]  William E. Buhro,et al.  Electrical transport in boron nanowires , 2003 .

[16]  K. Kern,et al.  Tuning the Field Emission Properties of Patterned Carbon Nanotube Films , 2001 .

[17]  R. McGregor Structure and Properties , 1954 .

[18]  Hongjun Gao,et al.  Well-aligned zinc oxide nanorods and nanowires prepared without catalyst , 2005 .

[19]  Dmitri Golberg,et al.  Quasi‐Aligned Single‐Crystalline W18O49 Nanotubes and Nanowires , 2003 .

[20]  Yiying Wu,et al.  Superconducting MgB2 Nanowires , 2001 .

[21]  Sungho Jin,et al.  In situ-grown carbon nanotube array with excellent field emission characteristics , 2000 .

[22]  Lihuan Sun,et al.  Well‐Aligned Boron Nanowire Arrays , 2001 .

[23]  P. Ajayan,et al.  Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures , 1995, Nature.

[24]  A. Jäger-Waldau,et al.  High-sensitivity quantitative Kelvin probe microscopy by noncontact ultra-high-vacuum atomic force microscopy , 1999 .

[25]  Charles R. Martin,et al.  Nanomaterials: A Membrane-Based Synthetic Approach , 1994, Science.

[26]  M. Yumura,et al.  Synthesis of crystalline boron nanowires by laser ablation. , 2002, Chemical communications.

[27]  I. Sokolov,et al.  Formation of Hollow Helicoids in Mesoporous Silica: Supramolecular Origami , 1999 .

[28]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .

[29]  A. Zettl,et al.  Nanotubes from Inorganic Materials , 2001 .

[30]  Andrew G. Glen,et al.  APPL , 2001 .

[31]  Takayanagi,et al.  Synthesis and characterization of helical multi-shell gold nanowires , 2000, Science.

[32]  Otto Zhou,et al.  Field Emission of Electrons from Single LaB6 Nanowires , 2006 .

[33]  Chun-Sing Lee,et al.  Boron nanowires synthesized by laser ablation at high temperature , 2003 .