Convergence of a finite element/ALE method for the Stokes equations in a domain depending on time

We consider the approximation of the unsteady Stokes equations in a time dependent domain when the motion of the domain is given. More precisely, we apply the finite element method to an Arbitrary Lagrangian Eulerian (ALE) formulation of the system. Our main results state the convergence of the solutions of the semi-discretized (with respect to the space variable) and of the fully-discrete problems towards the solutions of the Stokes system.

[1]  Charbel Farhat,et al.  On the significance of the geometric conservation law for flow computations on moving meshes , 2000 .

[2]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[3]  Jean-Luc Guermond,et al.  Convergence Analysis of a Finite Element Projection/Lagrange-Galerkin Method for the Incompressible Navier-Stokes Equations , 2000, SIAM J. Numer. Anal..

[4]  R. Glowinski,et al.  A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations , 1994 .

[5]  E. TezduyarT.,et al.  A new strategy for finite element computations involving moving boundaries and interfacesthe deforming-spatial-domain/space-time procedure. II , 1992 .

[6]  B. Maury Characteristics ALE Method for the Unsteady 3D Navier-Stokes Equations with a Free Surface , 1996 .

[7]  L. Wahlbin,et al.  Local behavior in finite element methods , 1991 .

[8]  O. Pironneau On the transport-diffusion algorithm and its applications to the Navier-Stokes equations , 1982 .

[9]  S. Osher,et al.  A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows , 1996 .

[10]  B. Maury,et al.  One time‐step finite element discretization of the equation of motion of two‐fluid flows , 2006 .

[11]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[12]  Céline Grandmont,et al.  Existence of Weak Solutions for the Unsteady Interaction of a Viscous Fluid with an Elastic Plate , 2005, SIAM J. Math. Anal..

[13]  Fabio Nobile,et al.  A Stability Analysis for the Arbitrary Lagrangian Eulerian Formulation with Finite Elements , 1999 .

[14]  Bertrand Maury,et al.  A Fat Boundary Method for the Poisson Problem in a Domain with Holes , 2002, J. Sci. Comput..

[15]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[16]  Yvon Maday,et al.  NUMERICAL ANALYSIS OF SOME DECOUPLING TECHNIQUES FOR THE APPROXIMATION OF THE UNSTEADY FLUID STRUCTURE INTERACTION , 2001 .

[17]  Céline Grandmont,et al.  Weak solutions for a fluid-elastic structure interaction model , 2001 .

[18]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[19]  Srinivasan Natesan,et al.  Arbitrary Lagrangian–Eulerian method for Navier–Stokes equations with moving boundaries , 2004 .

[20]  Fabio Nobile,et al.  Numerical approximation of fluid-structure interaction problems with application to haemodynamics , 2001 .

[21]  The exterior non-stationary problem for the Navier-Stokes equations in regions with moving boundaries , 1990 .

[22]  Thomas J. R. Hughes,et al.  A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems , 1997 .

[23]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[24]  H. B. Veiga On the Existence of Strong Solutions to a Coupled Fluid-Structure Evolution Problem , 2004 .

[25]  Endre Süli,et al.  Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations , 1988 .

[26]  David N. Bock On the Navier-Stokes equations in noncylindrical domains , 1977 .

[27]  H. Fujita,et al.  On evolution equations generated by subdifferential operators , 1976 .

[28]  Lucia Gastaldi,et al.  A priori error estimates for the Arbitrary Lagrangian Eulerian formulation with finite elements , 2001, J. Num. Math..

[29]  Silvia Bertoluzza,et al.  The Fat Boundary Method: Semi-Discrete Scheme and Some Numerical Experiments , 2005 .

[30]  Marius Tucsnak,et al.  Convergence of the Lagrange-Galerkin Method for the Equations Modelling the Motion of a Fluid-Rigid System , 2005, SIAM J. Numer. Anal..

[31]  T. Tezduyar,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .

[32]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[33]  M. Gurtin,et al.  An introduction to continuum mechanics , 1981 .

[34]  A. Huerta,et al.  Arbitrary Lagrangian–Eulerian Methods , 2004 .

[35]  W. Ames Mathematics in Science and Engineering , 1999 .

[36]  Muriel Boulakia,et al.  Existence of weak solutions for an interaction problem between an elastic structure and a compressible viscous fluid , 2005 .

[37]  C. Farhat,et al.  Mixed explicit/implicit time integration of coupled aeroelastic problems: Three‐field formulation, geometric conservation and distributed solution , 1995 .

[38]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[39]  B. Maury Regular Article: Direct Simulations of 2D Fluid-Particle Flows in Biperiodic Domains , 1999 .

[40]  S. Mittal,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. II: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders , 1992 .