A posteriori error estimator for adaptive local basis functions to solve Kohn-Sham density functional theory

Kohn-Sham density functional theory is one of the most widely used electronic structure theories. The recently developed adaptive local basis functions form an accurate and systematically improvable basis set for solving Kohn-Sham density functional theory using discontinuous Galerkin methods, requiring a small number of basis functions per atom. In this paper we develop residual-based a posteriori error estimates for the adaptive local basis approach, which can be used to guide non-uniform basis refinement for highly inhomogeneous systems such as surfaces and large molecules. The adaptive local basis functions are non-polynomial basis functions, and standard a posteriori error estimates for $hp$-refinement using polynomial basis functions do not directly apply. We generalize the error estimates for $hp$-refinement to non-polynomial basis functions. We demonstrate the practical use of the a posteriori error estimator in performing three-dimensional Kohn-Sham density functional theory calculations for quasi-2D aluminum surfaces and a single-layer graphene oxide system in water.

[1]  Sidney Yip,et al.  Quasiatomic orbitals for ab initio tight-binding analysis , 2008 .

[2]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[3]  Ohannes A. Karakashian,et al.  A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[4]  Mats G. Larson,et al.  A Posteriori and a Priori Error Analysis for Finite Element Approximations of Self-Adjoint Elliptic Eigenvalue Problems , 2000, SIAM J. Numer. Anal..

[5]  S. Goedecker,et al.  Relativistic separable dual-space Gaussian pseudopotentials from H to Rn , 1998, cond-mat/9803286.

[6]  M. Tsukada,et al.  Electronic-structure calculations based on the finite-element method. , 1995, Physical review. B, Condensed matter.

[7]  S. Nicaise,et al.  An accurate H(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems , 2007 .

[8]  M. Levitt,et al.  Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. , 1976, Journal of molecular biology.

[9]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[10]  Barbara I. Wohlmuth,et al.  A Local A Posteriori Error Estimator Based on Equilibrated Fluxes , 2004, SIAM J. Numer. Anal..

[11]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[12]  I. Babuska,et al.  Nonconforming Elements in the Finite Element Method with Penalty , 1973 .

[13]  Stefano Giani,et al.  An a posteriori error estimator for hp-adaptive discontinuous Galerkin methods for elliptic eigenvalue problems , 2012 .

[14]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[15]  P A Sterne,et al.  Real-space formulation of the electrostatic potential and total energy of solids , 2005 .

[16]  Jinchao Xu,et al.  Numerische Mathematik Convergence and optimal complexity of adaptive finite element eigenvalue computations , 2022 .

[17]  Dominik Schötzau,et al.  A robust a-posteriori error estimator for discontinuous Galerkin methods for convection--diffusion equations , 2009 .

[18]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[19]  Stefan Goedecker,et al.  ABINIT: First-principles approach to material and nanosystem properties , 2009, Comput. Phys. Commun..

[20]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[21]  Ricardo G. Durán,et al.  A Posteriori Error Estimates for the Finite Element Approximation of Eigenvalue Problems , 2003 .

[22]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[23]  Stefano Giani,et al.  An a posteriori error estimator for hp-adaptive discontinuous Galerkin methods for computing band gaps in photonic crystals , 2012, J. Comput. Appl. Math..

[24]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[25]  Lin-wang Wang,et al.  A divide-and-conquer linear scaling three-dimensional fragment method for large scale electronic structure calculations , 2008 .

[26]  D. Schötzau,et al.  ENERGY NORM A POSTERIORI ERROR ESTIMATION OF hp-ADAPTIVE DISCONTINUOUS GALERKIN METHODS FOR ELLIPTIC PROBLEMS , 2007 .

[27]  Dietrich Braess,et al.  Equilibrated residual error estimates are p-robust , 2009 .

[28]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[29]  Lixin He,et al.  Systematically improvable optimized atomic basis sets for ab initio calculations , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[30]  D. Sánchez-Portal,et al.  Numerical atomic orbitals for linear-scaling calculations , 2001, cond-mat/0104170.

[31]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[32]  Chi-Wang Shu,et al.  Discontinuous Galerkin Methods: Theory, Computation and Applications , 2011 .

[33]  Matthias Scheffler,et al.  Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..

[34]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[35]  S. Repin A Posteriori Estimates for Partial Differential Equations , 2008 .

[36]  Y. Saad,et al.  Finite-difference-pseudopotential method: Electronic structure calculations without a basis. , 1994, Physical review letters.

[37]  Aihui Zhou,et al.  Finite Volume Discretizations for Eigenvalue Problems with Applications to Electronic Structure Calculations , 2011, Multiscale Model. Simul..

[38]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[39]  E Weinan,et al.  Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework I: Total energy calculation , 2011, J. Comput. Phys..

[40]  Benjamin Stamm,et al.  hp-Optimal discontinuous Galerkin methods for linear elliptic problems , 2010, Math. Comput..

[41]  Taisuke Ozaki,et al.  Variationally optimized atomic orbitals for large-scale electronic structures , 2003 .

[42]  Aihui Zhou,et al.  Adaptive Finite Element Approximations for Kohn-Sham Models , 2013, Multiscale Model. Simul..

[43]  O. K. Andersen,et al.  Muffin-tin orbitals of arbitrary order , 2000 .

[44]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.