A posteriori error estimator for adaptive local basis functions to solve Kohn-Sham density functional theory
暂无分享,去创建一个
Chao Yang | Lin Lin | Jason Kaye | Chao Yang | Lin Lin | Jason Kaye
[1] Sidney Yip,et al. Quasiatomic orbitals for ab initio tight-binding analysis , 2008 .
[2] B. Alder,et al. THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .
[3] Ohannes A. Karakashian,et al. A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..
[4] Mats G. Larson,et al. A Posteriori and a Priori Error Analysis for Finite Element Approximations of Self-Adjoint Elliptic Eigenvalue Problems , 2000, SIAM J. Numer. Anal..
[5] S. Goedecker,et al. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn , 1998, cond-mat/9803286.
[6] M. Tsukada,et al. Electronic-structure calculations based on the finite-element method. , 1995, Physical review. B, Condensed matter.
[7] S. Nicaise,et al. An accurate H(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems , 2007 .
[8] M. Levitt,et al. Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. , 1976, Journal of molecular biology.
[9] M. Wheeler. An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .
[10] Barbara I. Wohlmuth,et al. A Local A Posteriori Error Estimator Based on Equilibrated Fluxes , 2004, SIAM J. Numer. Anal..
[11] Rolf Rannacher,et al. An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.
[12] I. Babuska,et al. Nonconforming Elements in the Finite Element Method with Penalty , 1973 .
[13] Stefano Giani,et al. An a posteriori error estimator for hp-adaptive discontinuous Galerkin methods for elliptic eigenvalue problems , 2012 .
[14] T. Arias,et al. Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .
[15] P A Sterne,et al. Real-space formulation of the electrostatic potential and total energy of solids , 2005 .
[16] Jinchao Xu,et al. Numerische Mathematik Convergence and optimal complexity of adaptive finite element eigenvalue computations , 2022 .
[17] Dominik Schötzau,et al. A robust a-posteriori error estimator for discontinuous Galerkin methods for convection--diffusion equations , 2009 .
[18] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[19] Stefan Goedecker,et al. ABINIT: First-principles approach to material and nanosystem properties , 2009, Comput. Phys. Commun..
[20] D. Arnold. An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .
[21] Ricardo G. Durán,et al. A Posteriori Error Estimates for the Finite Element Approximation of Eigenvalue Problems , 2003 .
[22] A. Zunger,et al. Self-interaction correction to density-functional approximations for many-electron systems , 1981 .
[23] Stefano Giani,et al. An a posteriori error estimator for hp-adaptive discontinuous Galerkin methods for computing band gaps in photonic crystals , 2012, J. Comput. Appl. Math..
[24] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[25] Lin-wang Wang,et al. A divide-and-conquer linear scaling three-dimensional fragment method for large scale electronic structure calculations , 2008 .
[26] D. Schötzau,et al. ENERGY NORM A POSTERIORI ERROR ESTIMATION OF hp-ADAPTIVE DISCONTINUOUS GALERKIN METHODS FOR ELLIPTIC PROBLEMS , 2007 .
[27] Dietrich Braess,et al. Equilibrated residual error estimates are p-robust , 2009 .
[28] R. Martin,et al. Electronic Structure: Basic Theory and Practical Methods , 2004 .
[29] Lixin He,et al. Systematically improvable optimized atomic basis sets for ab initio calculations , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.
[30] D. Sánchez-Portal,et al. Numerical atomic orbitals for linear-scaling calculations , 2001, cond-mat/0104170.
[31] W. Kohn,et al. Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .
[32] Chi-Wang Shu,et al. Discontinuous Galerkin Methods: Theory, Computation and Applications , 2011 .
[33] Matthias Scheffler,et al. Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..
[34] Chi-Wang Shu,et al. Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..
[35] S. Repin. A Posteriori Estimates for Partial Differential Equations , 2008 .
[36] Y. Saad,et al. Finite-difference-pseudopotential method: Electronic structure calculations without a basis. , 1994, Physical review letters.
[37] Aihui Zhou,et al. Finite Volume Discretizations for Eigenvalue Problems with Applications to Electronic Structure Calculations , 2011, Multiscale Model. Simul..
[38] P. Hohenberg,et al. Inhomogeneous Electron Gas , 1964 .
[39] E Weinan,et al. Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework I: Total energy calculation , 2011, J. Comput. Phys..
[40] Benjamin Stamm,et al. hp-Optimal discontinuous Galerkin methods for linear elliptic problems , 2010, Math. Comput..
[41] Taisuke Ozaki,et al. Variationally optimized atomic orbitals for large-scale electronic structures , 2003 .
[42] Aihui Zhou,et al. Adaptive Finite Element Approximations for Kohn-Sham Models , 2013, Multiscale Model. Simul..
[43] O. K. Andersen,et al. Muffin-tin orbitals of arbitrary order , 2000 .
[44] Martins,et al. Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.