Rapid star formation and global gravitational collapse

Most young stars in nearby molecular clouds have estimated ages of 1–2 Myr, suggesting that star formation is rapid. However, small numbers of stars in these regions with inferred ages of >rsim5–10 Myr have been cited to argue that star formation is instead a slow, quasi-static process. When considering these alternative pictures it is important to recognize that the age spread in a given star-forming cloud is necessarily an upper limit to the time-scales of local collapse, as not all spatially distinct regions will start contracting at precisely the same instant. Moreover, star-forming clouds may dynamically evolve on time-scales of a few Myr; in particular, global gravitational contraction will tend to yield increasing star formation rates with time due to generally increasing local gas densities. We show that two different numerical simulations of dynamic, flow-driven molecular cloud formation and evolution (1) predict age spreads for the main stellar population roughly consistent with observations and (2) raise the possibility of forming small numbers of stars early in cloud evolution, before global contraction concentrates the gas and the bulk of the stellar population is produced. In general, the existence of a small number of older stars among a generally much younger population is consistent with the picture of dynamic star formation and may even provide clues to the time evolution of star-forming clouds.

[1]  J. Prochaska,et al.  CONFRONTING SIMULATIONS OF OPTICALLY THICK GAS IN MASSIVE HALOS WITH OBSERVATIONS AT z = 2–3 , 2013, 1308.1669.

[2]  E. V'azquez-Semadeni,et al.  AN EVOLUTIONARY MODEL FOR COLLAPSING MOLECULAR CLOUDS AND THEIR STAR FORMATION ACTIVITY. II. MASS DEPENDENCE OF THE STAR FORMATION RATE , 2011, 1105.4777.

[3]  R. Jeffries Are There Age Spreads in Star Forming Regions , 2011, 1102.4752.

[4]  U. Sheffield,et al.  No wide spread of stellar ages in the Orion Nebula Cluster , 2011, 1108.2052.

[5]  D. Johnstone,et al.  MODES OF STAR FORMATION IN FINITE MOLECULAR CLOUDS , 2011, 1108.1395.

[6]  N. D. Rio,et al.  Quantitative evidence of an intrinsic luminosity spread in the Orion nebula cluster , 2011, 1108.1015.

[7]  Zhaohuan Zhu,et al.  On Rapid Disk Accretion and Initial Conditions in Protostellar Evolution , 2011, 1106.3343.

[8]  R. Klein,et al.  RADIATION-HYDRODYNAMIC SIMULATIONS OF THE FORMATION OF ORION-LIKE STAR CLUSTERS. I. IMPLICATIONS FOR THE ORIGIN OF THE INITIAL MASS FUNCTION , 2011, 1104.2038.

[9]  M. Krumholz,et al.  ON THE RELIABILITY OF STELLAR AGES AND AGE SPREADS INFERRED FROM PRE-MAIN-SEQUENCE EVOLUTIONARY MODELS , 2011, 1101.3599.

[10]  I. Cambridge,et al.  Why are most molecular clouds not gravitationally bound , 2011, 1101.3414.

[11]  J. Ballesteros-Paredes,et al.  Gravity or turbulence? Velocity dispersion–size relation , 2010, 1009.1583.

[12]  I. Bonnell,et al.  The efficiency of star formation in clustered and distributed regions , 2010, 1009.1152.

[13]  N. D. Rio,et al.  A MULTI-COLOR OPTICAL SURVEY OF THE ORION NEBULA CLUSTER. II. THE H-R DIAGRAM , 2010, 1008.1265.

[14]  H. Roussel,et al.  From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt survey , 2010, 1005.2618.

[15]  L. Hartmann,et al.  GRAVITATIONAL COLLAPSE AND FILAMENT FORMATION: COMPARISON WITH THE PIPE NEBULA , 2009, 0909.2018.

[16]  G. Chabrier,et al.  EPISODIC ACCRETION AT EARLY STAGES OF EVOLUTION OF LOW-MASS STARS AND BROWN DWARFS: A SOLUTION FOR THE OBSERVED LUMINOSITY SPREAD IN H–R DIAGRAMS? , 2009, 0907.3886.

[17]  N. D. Rio,et al.  A MULTI-COLOR OPTICAL SURVEY OF THE ORION NEBULA CLUSTER. I. THE CATALOG , 2009, 0906.4336.

[18]  L. Hartmann,et al.  KINEMATIC SIGNATURES OF SUBVIRIAL INITIAL CONDITIONS IN YOUNG CLUSTERS , 2009, 0903.3242.

[19]  M. Mateo,et al.  KINEMATICS OF THE ORION NEBULA CLUSTER: VELOCITY SUBSTRUCTURE AND SPECTROSCOPIC BINARIES , 2009, 0903.2775.

[20]  L. Hartmann,et al.  Accretion Processes in Star Formation: Second Edition , 2009 .

[21]  Coleman Krawczyk,et al.  RE-EXAMINING LARSON'S SCALING RELATIONSHIPS IN GALACTIC MOLECULAR CLOUDS , 2008, 0809.1397.

[22]  L. Hartmann,et al.  Rapid Molecular Cloud and Star Formation: Mechanisms and Movies , 2008, 0808.1078.

[23]  R. Klessen,et al.  From the warm magnetized atomic medium to molecular clouds , 2008, 0805.1366.

[24]  A. Szentgyorgyi,et al.  Kinematic Structure of the Orion Nebula Cluster and Its Surroundings , 2007, 0711.0391.

[25]  L. Hartmann,et al.  Cooling, Gravity, and Geometry: Flow-driven Massive Core Formation , 2007, 0709.2451.

[26]  Ettore Flaccomio,et al.  Old Stars in Young Clusters: Lithium-depleted Low-Mass Stars of the Orion Nebula Cluster , 2007 .

[27]  M. Lombardi,et al.  The mass function of dense molecular cores and the origin of the IMF , 2006, astro-ph/0612126.

[28]  R. Klessen,et al.  Molecular Cloud Evolution. II. From Cloud Formation to the Early Stages of Star Formation in Decaying Conditions , 2006, astro-ph/0608375.

[29]  L. Hartmann,et al.  On the Structure of the Orion A Cloud and the Formation of the Orion Nebula Cluster , 2006, astro-ph/0609679.

[30]  L. Hartmann,et al.  The Birth of Molecular Clouds: Formation of Atomic Precursors in Colliding Flows , 2006, astro-ph/0605435.

[31]  S. Randich,et al.  Age Spreads in Star-forming Regions: The Lithium Test in the Orion Nebula Cluster , 2005, astro-ph/0505162.

[32]  Christopher F. McKee,et al.  A General Theory of Turbulence-regulated Star Formation, from Spirals to Ultraluminous Infrared Galaxies , 2005, astro-ph/0505177.

[33]  L. Hartmann,et al.  Collapse and Fragmentation in Finite Sheets , 2004, astro-ph/0409680.

[34]  John C. Raymond,et al.  Molecular Cloud Formation behind Shock Waves , 2004, astro-ph/0405329.

[35]  Volker Bromm,et al.  The formation of a star cluster: predicting the properties of stars and brown dwarfs , 2002, astro-ph/0212380.

[36]  L. Hartmann,et al.  Comments on Inferences of Star Formation Histories and Birth Lines , 2002, astro-ph/0211021.

[37]  L. Hartmann,et al.  Rapid Formation of Molecular Clouds and Stars in the Solar Neighborhood , 2001, astro-ph/0108023.

[38]  L. Hartmann,et al.  On Age Spreads in Star-forming Regions , 2001 .

[39]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[40]  V. Springel,et al.  GADGET: a code for collisionless and gasdynamical cosmological simulations , 2000, astro-ph/0003162.

[41]  F. Palla,et al.  Accelerating Star Formation in Clusters and Associations , 2000 .

[42]  B. Elmegreen Star Formation in a Crossing Time , 1999, astro-ph/9911172.

[43]  Francesco Palla,et al.  Star Formation in the Orion Nebula Cluster , 1999 .

[44]  L. Hartmann,et al.  Turbulent Flow-driven Molecular Cloud Formation: A Solution to the Post-T Tauri Problem? , 1999, astro-ph/9907053.

[45]  Leo Blitz,et al.  DETERMINING STRUCTURE IN MOLECULAR CLOUDS , 1994 .

[46]  B. Jones,et al.  Proper Motions and Variabilities of Stars Near the Orion Nebula , 1988 .

[47]  R. Wilson,et al.  Filamentary structure in the Orion molecular cloud , 1986 .