An alternative to Riemann-Siegel type formulas
暂无分享,去创建一个
[1] J. Keating. Recent Perspectives in Random Matrix Theory and Number Theory , 2005 .
[2] Peter Sarnak,et al. Perspectives on the Analytic Theory of L-Functions , 2000 .
[3] G. Hiary. Computing Dirichlet character sums to a power-full modulus , 2012, 1205.4687.
[4] A. Turing. A method for the calculation of the zeta-function Universal Turing Machine , 2011 .
[5] M. Berry,et al. The Riemann-Siegel expansion for the zeta function: high orders and remainders , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[6] Glyn Harman,et al. ANALYTIC NUMBER THEORY (American Mathematical Society Colloquium Publications 53) , 2005 .
[7] D. R. Heath-Brown,et al. The Theory of the Riemann Zeta-Function , 1987 .
[8] Ghaith Ayesh Hiary,et al. Fast methods to compute the Riemann zeta function , 2007, 0711.5005.
[9] Robert Rumely,et al. Numerical computations concerning the ERH , 1993 .
[10] Juan Arias de Reyna. High precision computation of Riemann's zeta function by the Riemann-Siegel formula, I , 2011, Math. Comput..
[11] J. Keating,et al. A new asymptotic representation for ζ(½ + it) and quantum spectral determinants , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[12] H. Iwaniec,et al. Analytic Number Theory , 2004 .
[13] M. Deuring,et al. Asymptotische Entwicklungen der DirichletschenL-Reihen , 1967 .
[14] Wolfgang Gabcke,et al. Neue Herleitung und explizite Restabschätzung der Riemann-Siegel-Formel , 2015 .
[15] Arnold Schönhage,et al. Fast algorithms for multiple evaluations of the riemann zeta function , 1988 .
[16] Harold M. Edwards,et al. Riemann's Zeta Function , 1974 .
[17] Michael O. Rubinstein,et al. Computational methods and experiments in analytic number theory , 2004 .
[18] Carl Ludwig Siegel,et al. Contributions to the Theory of the Dirichlet L-Series and the Epstein Zeta-Functions , 1943 .
[19] Maurice Vincent Wilkes,et al. An approximate functional equation for Dirichlet L-functions , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.