An alternative to Riemann-Siegel type formulas

Simple unsmoothed formulas to compute the Riemann zeta function, and Dirichlet $L$-functions to a power-full modulus, are derived by elementary means (Taylor expansions and the geometric series). The formulas enable square-root of the analytic conductor complexity, up to logarithmic loss, and have an explicit remainder term that is easy to control. The formula for zeta yields a convexity bound of the same strength as that from the Riemann-Siegel formula, up to a constant factor. Practical parameter choices are discussed.

[1]  J. Keating Recent Perspectives in Random Matrix Theory and Number Theory , 2005 .

[2]  Peter Sarnak,et al.  Perspectives on the Analytic Theory of L-Functions , 2000 .

[3]  G. Hiary Computing Dirichlet character sums to a power-full modulus , 2012, 1205.4687.

[4]  A. Turing A method for the calculation of the zeta-function Universal Turing Machine , 2011 .

[5]  M. Berry,et al.  The Riemann-Siegel expansion for the zeta function: high orders and remainders , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[6]  Glyn Harman,et al.  ANALYTIC NUMBER THEORY (American Mathematical Society Colloquium Publications 53) , 2005 .

[7]  D. R. Heath-Brown,et al.  The Theory of the Riemann Zeta-Function , 1987 .

[8]  Ghaith Ayesh Hiary,et al.  Fast methods to compute the Riemann zeta function , 2007, 0711.5005.

[9]  Robert Rumely,et al.  Numerical computations concerning the ERH , 1993 .

[10]  Juan Arias de Reyna High precision computation of Riemann's zeta function by the Riemann-Siegel formula, I , 2011, Math. Comput..

[11]  J. Keating,et al.  A new asymptotic representation for ζ(½ + it) and quantum spectral determinants , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[12]  H. Iwaniec,et al.  Analytic Number Theory , 2004 .

[13]  M. Deuring,et al.  Asymptotische Entwicklungen der DirichletschenL-Reihen , 1967 .

[14]  Wolfgang Gabcke,et al.  Neue Herleitung und explizite Restabschätzung der Riemann-Siegel-Formel , 2015 .

[15]  Arnold Schönhage,et al.  Fast algorithms for multiple evaluations of the riemann zeta function , 1988 .

[16]  Harold M. Edwards,et al.  Riemann's Zeta Function , 1974 .

[17]  Michael O. Rubinstein,et al.  Computational methods and experiments in analytic number theory , 2004 .

[18]  Carl Ludwig Siegel,et al.  Contributions to the Theory of the Dirichlet L-Series and the Epstein Zeta-Functions , 1943 .

[19]  Maurice Vincent Wilkes,et al.  An approximate functional equation for Dirichlet L-functions , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.