Physical Modelling and Particle Swarm Design Of Coplanar Waveguide Square Spiral Inductor

Abstract This paper presents simple lumped element equivalent circuit for the coplanar waveguide (CPW) square spiral inductor. The circuit is based on physical modelling which takes into consideration the parasitic effects inherent in the CPW spiral inductor. The obtained scattering parameters are in good agreement with fullwave and quasi-static results available in the literature. Such a simple circuit model is suitable for computer aided design (CAD) purposes, and could be used along with optimization techniques for synthesis purposes. Moreover, the particle swarm optimization (PSO) technique is used to design the CPW inductor. Specifically, given the desired inductance, the PSO is used to find the dimensions and the number of turns of the spiral.

[1]  J. Kennedy,et al.  Population structure and particle swarm performance , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[2]  X. Yao Evolving Artificial Neural Networks , 1999 .

[3]  D. Dawson,et al.  A Closed-Form Expression for Representing the Distributed Nature of the Spiral Inductor , 1986, Microwave and Millimeter-Wave Monolithic Circuits.

[4]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[5]  Xin Yao,et al.  Evolving artificial neural networks , 1999, Proc. IEEE.

[6]  M. Abdo-Tuko,et al.  Novel 18/36 GHz (M)MIC GaAs FET frequency doublers in CPW-techniques under the consideration of the effects of coplanar discontinuities , 1993 .

[7]  Andries P. Engelbrecht,et al.  Effects of swarm size on Cooperative Particle Swarm Optimisers , 2001 .

[8]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[9]  Peter S. Excell,et al.  Accurate distributed inductance of spiral resonators , 1998 .

[10]  See-Chuan Leong Design, Optimization of RF Spiral Inductors Using Scalable Compact and Accurate Models , 2003 .

[11]  Y. C. Shih,et al.  A broadband parameter extraction technique for the equivalent circuit of planar inductors , 1992, 1992 IEEE Microwave Symposium Digest MTT-S.

[12]  U. Baumgartner,et al.  Particle swarm optimization - mass-spring system analogon , 2002 .

[13]  Isabelle Huynen Novel fast multiline analysis of parasitic effects in CPW inductors for MMICs , 1998 .

[14]  Stephen P. Boyd,et al.  Simple accurate expressions for planar spiral inductances , 1999, IEEE J. Solid State Circuits.

[15]  Y. Rahmat-Samii,et al.  Particle swarm optimization in electromagnetics , 2004, IEEE Transactions on Antennas and Propagation.

[16]  S. Wong,et al.  Physical modeling of spiral inductors on silicon , 2000 .

[17]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[18]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[19]  Russell C. Eberhart,et al.  A discrete binary version of the particle swarm algorithm , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[20]  P. Pogatzki,et al.  A comprehensive evaluation of quasi-static 3D-FD calculations for more than 14 CPW structures-lines, discontinuities and lumped elements , 1994, 1994 IEEE MTT-S International Microwave Symposium Digest (Cat. No.94CH3389-4).

[21]  Y. Leonard Chow,et al.  Simple CAD formula for inductance calculation of square spiral inductors with grounded substrate by duality and synthetic asymptote , 2002 .

[22]  M. El-Hawary,et al.  Enhancing the particle swarm optimizer via proper parameters selection , 2002, IEEE CCECE2002. Canadian Conference on Electrical and Computer Engineering. Conference Proceedings (Cat. No.02CH37373).

[23]  J. Kennedy,et al.  Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[24]  D. Caruth,et al.  Accurate passive component models in coplanar waveguide for 50 GHz MMICs , 1997, 1997 IEEE MTT-S International Microwave Symposium Digest.

[25]  Peter S. Excell,et al.  Calculation of distributed capacitances of spiral resonators , 1997 .

[26]  M. Morris,et al.  The Design , 1998 .

[27]  Yannis Papananos,et al.  Systematic analysis and modeling of integrated inductors and transformers in RF IC design , 2000 .

[28]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[29]  Ingo Wolff,et al.  CAD models of lumped elements on GaAs up to 18 GHz , 1988 .

[30]  T. Vaupel,et al.  Electrodynamic analysis of combined microstrip and coplanar/slotine structures with 3-D components based on a surface/volume integral-equation approach , 1999 .

[32]  S. S. Mohan,et al.  The design, modeling and optimization of on-chip inductor and transformer circuits , 1999 .

[33]  H. Greenhouse,et al.  Design of Planar Rectangular Microelectronic Inductors , 1974 .

[34]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[35]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.