Bounds on the Belief Propagation Threshold of Non-Binary LDPC Codes

We consider low-density parity-check (LDPC) code ensembles over non-binary Galois fields when used for transmission over arbitrary discrete memoryless channels. Belief propagation decoding for these codes has been shown to achieve excellent results. However, computing the decoding threshold using density evolution is usually impractical, since one needs to propagate multi-dimensional probability distributions, and Monte Carlo simulations are required instead. By considering the evolution of the message Bhattacharyya parameter and the message expected value parameter, we derive a simple lower bound on the performance of the algorithm. This bound applies for both regular and irregular non-binary LDPC ensembles.

[1]  Marco Chiani,et al.  Protograph LDPC Codes Design Based on EXIT Analysis , 2007, IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference.

[2]  Shlomo Shamai,et al.  Constrained Information Combining: Theory and Applications for LDPC Coded Systems , 2007, IEEE Transactions on Information Theory.

[3]  Stephan ten Brink,et al.  Design of low-density parity-check codes for modulation and detection , 2004, IEEE Transactions on Communications.

[4]  Rüdiger L. Urbanke,et al.  Density Evolution, Thresholds and the Stability Condition for Non-binary LDPC Codes , 2005, ArXiv.

[5]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[6]  David Burshtein,et al.  On the application of LDPC codes to arbitrary discrete-memoryless channels , 2003, IEEE Transactions on Information Theory.

[7]  Johannes B. Huber,et al.  Information Combining , 2006, Found. Trends Commun. Inf. Theory.

[8]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[9]  D. Burshtein,et al.  Bounds on the thresholds of non-binary LDPC codes , 2008, 2008 IEEE 25th Convention of Electrical and Electronics Engineers in Israel.

[10]  Rüdiger L. Urbanke,et al.  Spatially Coupled Ensembles Universally Achieve Capacity Under Belief Propagation , 2013, IEEE Trans. Inf. Theory.

[11]  Aamod Dinkar Khandekar,et al.  Graph-based codes and iterative decoding , 2003 .

[12]  Igal Sason,et al.  On Universal LDPC Code Ensembles Over Memoryless Symmetric Channels , 2011, IEEE Transactions on Information Theory.

[13]  Paul H. Siegel,et al.  Multilevel coding with low-density parity-check component codes , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[14]  David J. C. MacKay,et al.  Low-density parity check codes over GF(q) , 1998, IEEE Communications Letters.

[15]  C. P. Huber,et al.  Precise structural information for transient enzyme-substrate complexes by a combined X-ray crystallographic-resonance Raman spectroscopic approach. , 1982, Biochemistry.

[16]  David Declercq,et al.  Low-complexity decoding for non-binary LDPC codes in high order fields , 2010, IEEE Transactions on Communications.

[17]  David Burshtein,et al.  Bounds on the performance of belief propagation decoding , 2002, IEEE Trans. Inf. Theory.

[18]  Eimear Byrne,et al.  Linear-Programming Decoding of Nonbinary Linear Codes , 2007, IEEE Transactions on Information Theory.

[19]  Lara Dolecek,et al.  Non-Binary Protograph-Based LDPC Codes: Enumerators, Analysis, and Designs , 2014, IEEE Transactions on Information Theory.

[20]  Khaled A. S. Abdel-Ghaffar,et al.  A unified approach to the construction of binary and nonbinary quasi-cyclic LDPC codes based on finite fields , 2009, IEEE Transactions on Communications.

[21]  Dimitri P. Bertsekas,et al.  Convex Analysis and Optimization , 2003 .

[22]  David Burshtein,et al.  Design and analysis of nonbinary LDPC codes for arbitrary discrete-memoryless channels , 2005, IEEE Transactions on Information Theory.

[23]  Uri Erez,et al.  The ML decoding performance of LDPC ensembles over Z/sub q/ , 2005, IEEE Transactions on Information Theory.

[24]  Ivan J. Fair,et al.  Density Evolution for Nonbinary LDPC Codes Under Gaussian Approximation , 2009, IEEE Transactions on Information Theory.

[25]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[26]  H. Vincent Poor,et al.  Finite-Dimensional Bounds on ${\BBZ}_m$ and Binary LDPC Codes With Belief Propagation Decoders , 2006, IEEE Transactions on Information Theory.

[27]  Shlomo Shamai,et al.  Performance Bounds for Nonbinary Linear Block Codes Over Memoryless Symmetric Channels , 2009, IEEE Transactions on Information Theory.