b-Coloring Parameterized by Clique-Width

We provide a polynomial-time algorithm for b-Coloring on graphs of constant clique-width. This unifies and extends previously known polynomial-time results on several graph classes, and answers open questions posed by Campos and Silva [Algorithmica, 2018] and Bonomo et al. [Graphs Combin., 2009]. This constitutes the first result concerning structural parameterizations of this problem. We show that the problem is FPT when parameterized by the vertex cover number on general graphs, and on chordal graphs when parameterized by the number of colors. Additionally, we observe that our algorithm for graphs of bounded clique-width can be adapted to solve the Fall Coloring problem within the same runtime bound.

[1]  Ana Silva Graphs with small fall-spectrum , 2019, Discret. Appl. Math..

[2]  Fahad Panolan,et al.  On the parameterized complexity of b-chromatic number , 2017, J. Comput. Syst. Sci..

[3]  Mekkia Kouider,et al.  On the b-coloring of tight graphs , 2017, J. Comb. Optim..

[4]  Eun Jung Kim,et al.  Grundy Coloring & friends, Half-Graphs, Bicliques , 2020, STACS.

[5]  Rudini Menezes Sampaio,et al.  Maximization coloring problems on graphs with few P4 , 2014, Discret. Appl. Math..

[6]  Johann A. Makowsky,et al.  On the Clique-Width of Graphs with Few P4's , 1999, Int. J. Found. Comput. Sci..

[7]  Jan Arne Telle,et al.  Algorithms for Vertex Partitioning Problems on Partial k-Trees , 1997, SIAM J. Discret. Math..

[8]  David Manlove,et al.  The b-chromatic Number of a Graph , 1999, Discret. Appl. Math..

[9]  Ana Silva,et al.  Edge-b-Coloring Trees , 2015, Algorithmica.

[10]  Lars Jaffke,et al.  A Complexity Dichotomy for Critical Values of the b-Chromatic Number of Graphs , 2018, MFCS.

[11]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[12]  Maya Jakobine Stein,et al.  $$b$$b-Coloring is NP-hard on Co-bipartite Graphs and Polytime Solvable on Tree-Cographs , 2014, Algorithmica.

[13]  Blair J R S,et al.  Introduction to Chordal Graphs and Clique Trees, in Graph Theory and Sparse Matrix Computation , 1997 .

[14]  Leonardo Sampaio Algorithmic aspects of graph colourings heuristics , 2012 .

[15]  Renu C. Laskar,et al.  Fall colouring of bipartite graphs and cartesian products of graphs , 2009, Discret. Appl. Math..

[16]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[17]  Christodoulos Mitillos Topics in graph fall-coloring , 2016 .

[18]  Udi Rotics,et al.  On the Clique-Width of Some Perfect Graph Classes , 2000, Int. J. Found. Comput. Sci..

[19]  Juho Lauri,et al.  Complexity of Fall Coloring for Restricted Graph Classes , 2019, Theory of Computing Systems.

[20]  Saket Saurabh,et al.  Parameterized and Exact Algorithms for Class Domination Coloring , 2021, SOFSEM.

[21]  Yota Otachi,et al.  Grundy Distinguishes Treewidth from Pathwidth , 2020, ESA.

[22]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width , 2000, Theory of Computing Systems.

[23]  Maya Jakobine Stein,et al.  $$b$$b-Coloring is NP-hard on Co-bipartite Graphs and Polytime Solvable on Tree-Cographs , 2013, Algorithmica.

[24]  Wayne Goddard,et al.  Independent domination in graphs: A survey and recent results , 2013, Discret. Math..

[25]  Javier Marenco,et al.  On the b-Coloring of Cographs and P4-Sparse Graphs , 2009, Graphs Comb..

[26]  Pinar Heggernes,et al.  Partitioning Graphs into Generalized Dominating Sets , 1998, Nord. J. Comput..

[27]  B. Peyton,et al.  An Introduction to Chordal Graphs and Clique Trees , 1993 .

[28]  Dániel Marx,et al.  Slightly superexponential parameterized problems , 2011, SODA '11.

[29]  Daniël Paulusma,et al.  Clique-Width for Hereditary Graph Classes , 2019, BCC.

[30]  Ana Silva,et al.  The b-chromatic index of graphs , 2015, Discret. Math..

[31]  Ana Shirley Ferreira Da Silva,et al.  The b-chromatic number of some tree-like graphs. (Le nombre b-chromatique de quelques classes de graphes généralisant les arbres) , 2010 .

[32]  Michaël Rao,et al.  Clique-width of graphs defined by one-vertex extensions , 2008, Discret. Math..

[33]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique Width , 1998, WG.

[34]  Olivier Togni,et al.  A characterization of b-chromatic and partial Grundy numbers by induced subgraphs , 2016, Discret. Math..

[35]  Bruno Courcelle,et al.  Handle-Rewriting Hypergraph Grammars , 1993, J. Comput. Syst. Sci..

[36]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[37]  Guillaume Ducoffe,et al.  Fully Polynomial FPT Algorithms for Some Classes of Bounded Clique-width Graphs , 2019, ACM Trans. Algorithms.

[38]  Zsolt Tuza,et al.  On the b-Chromatic Number of Graphs , 2002, WG.

[39]  Dániel Marx,et al.  Lower bounds based on the Exponential Time Hypothesis , 2011, Bull. EATCS.

[40]  Ana Silva,et al.  Graphs of girth at least 7 have high b-chromatic number , 2015, Eur. J. Comb..

[41]  Egon Wanke,et al.  k-NLC Graphs and Polynomial Algorithms , 1994, Discret. Appl. Math..

[42]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .

[43]  Saeed Shaebani On Fall Colorings of Graphs , 2015, Ars Comb..

[44]  Egon Wanke,et al.  How to Solve NP-hard Graph Problems on Clique-Width Bounded Graphs in Polynomial Time , 2001, WG.

[45]  Russell Impagliazzo,et al.  Complexity of k-SAT , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[46]  Hans-Jürgen Bandelt,et al.  Distance-hereditary graphs , 1986, J. Comb. Theory, Ser. B.

[47]  Flavia Bonomo,et al.  On the b-coloring of P4-tidy graphs , 2011, Discret. Appl. Math..

[48]  Frédéric Havet,et al.  On the Grundy and b-Chromatic Numbers of a Graph , 2013, Algorithmica.

[49]  M. Rao Décompositions de graphes et algorithmes efficaces , 2006 .

[50]  Petr A. Golovach,et al.  Intractability of Clique-Width Parameterizations , 2010, SIAM J. Comput..