Polymorphic Evolution of TiO 2 in Hydrothermal Reaction System of Layered Titanate Nanosheets

[1]  T. Kusunose,et al.  Microwave-Assisted Topochemical Conversion of Layered Titanate Nanosheets to {010}-Faceted Anatase Nanocrystals for High Performance Photocatalysts and Dye-Sensitized Solar Cells , 2014 .

[2]  Xiaojing Yang,et al.  Photocatalytic and dye-sensitized solar cell performances of {010}-faceted and [111]-faceted anatase TiO₂ nanocrystals synthesized from tetratitanate nanoribbons. , 2014, ACS applied materials & interfaces.

[3]  Shan Cong,et al.  Brookite vs Anatase TiO2 in the Photocatalytic Activity for Organic Degradation in Water , 2014 .

[4]  W. Liang,et al.  Origin of high photocatalytic properties in the mixed-phase TiO2: a first-principles theoretical study. , 2014, ACS applied materials & interfaces.

[5]  A. Walsh,et al.  Band alignment of rutile and anatase TiO₂. , 2013, Nature materials.

[6]  Zhong Chen,et al.  Enhanced Photocatalytic Hydrogen Production with Synergistic Two-Phase Anatase/Brookite TiO2 Nanostructures , 2013 .

[7]  Lianjun Liu,et al.  Bicrystalline TiO2 with controllable anatase–brookite phase content for enhanced CO2 photoreduction to fuels , 2013 .

[8]  Bin Zhao,et al.  Phase and morphological transitions of titania/titanate nanostructures from an acid to an alkali hydrothermal environment , 2013 .

[9]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[10]  S. Manorama,et al.  Viable method for the synthesis of biphasic TiO2 nanocrystals with tunable phase composition and enabled visible-light photocatalytic performance. , 2012, ACS applied materials & interfaces.

[11]  Charles C. Sorrell,et al.  Review of the anatase to rutile phase transformation , 2011 .

[12]  Jinlong Zhang,et al.  Phase transition and morphological evolution of titania/titanate nanomaterials under alkalescent hydrothermal treatment , 2010 .

[13]  Tarek A. Kandiel,et al.  Tailored Titanium Dioxide Nanomaterials: Anatase Nanoparticles and Brookite Nanorods as Highly Active Photocatalysts , 2010 .

[14]  T. Ban,et al.  Morphology of anatase crystals and their aggregates synthesized hydrothermally from aqueous mixtures of titanium alkoxide and different alkylammonium hydroxides , 2009 .

[15]  T. Ban,et al.  Microstructure of Six-Pointed Starlike Anatase Aggregates , 2008 .

[16]  Xudong Sun,et al.  ANATASE, BROOKITE, AND RUTILE NANOCRYSTALS VIA REDOX REACTIONS UNDER MILD HYDROTHERMAL CONDITIONS: PHASE SELECTIVE SYNTHESIS AND PHYSICOCHEMICAL PROPERTIES , 2007 .

[17]  G. Pang,et al.  Direct synthesis of nanowires with anatase and TiO2-B structures at near ambient conditions. , 2006, The journal of physical chemistry. B.

[18]  A. Yamazaki,et al.  Charge separation at the rutile/anatase interface: a dominant factor of photocatalytic activity , 2004 .

[19]  Kimberly A. Gray,et al.  Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR , 2003 .

[20]  Y. Konishi,et al.  A patterned TiO(2)(anatase)/TiO(2)(rutile) bilayer-type photocatalyst: effect of the anatase/rutile junction on the photocatalytic activity. , 2002, Angewandte Chemie.

[21]  Akira Fujishima,et al.  Titanium dioxide photocatalysis , 2000 .

[22]  Jackie Y. Ying,et al.  Sol−Gel Synthesis and Hydrothermal Processing of Anatase and Rutile Titania Nanocrystals , 1999 .

[23]  K. Yanagisawa,et al.  Effect of Hydrothermal Treatment of Amorphous Titania on the Phase Change from Anatase to Rutile during Calcination , 1999 .

[24]  T. Sasaki,et al.  Preparation and Acid-Base Properties of a Protonated Titanate with the Lepidocrocite-like Layer Structure , 1995 .

[25]  L. Qi,et al.  Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles , 1995 .

[26]  J. Bolton,et al.  Photocatalytic Efficiency Variability in TiO2 Particles , 1995 .

[27]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[28]  B. Ohtani,et al.  Highly active semiconductor photocatalyst: Extra-fine crystallite of brookite TiO2 for redox reaction in aqueous propan-2-ol and / or silver sulfate solution , 1985 .

[29]  W. Brower,et al.  Crystal chemistry of lithium in octahedrally coordinated structures III. A new structure-type in the system K2O:Li2O:TiO2 (KxLixTi4−x2O8) , 1973 .

[30]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[31]  J. Banfield,et al.  Thermodynamic analysis of phase stability of nanocrystalline titania , 1998 .