NMR Based Quantum Information Processing: Achievements and Prospects

Nuclear magnetic resonance (NMR) provides an experimental setting to explore physical implementations of quantum information processing (QIP). Here we introduce the basic background for understanding applications of NMR to QIP and explain their current successes, limitations and potential. NMR spectroscopy is well known for its wealth of diverse coherent manipulations of spin dynamics. Ideas and instrumentation from liquid state NMR spectroscopy have been used to experiment with QIP. This approach has carried the field to a complexity of about 10 qubits, a small number for quantum computation but large enough for observing and better understanding the complexity of the quantum world. While liquid state NMR is the only present-day technology about to reach this number of qubits, further increases in complexity will require new methods. We sketch one direction leading towards a scalable quantum computer using spin 1/2 particles. The next step of which is a solid state NMR-based QIP capable of reaching 10-30 qubits.

[1]  Warren S. Warren,et al.  Theory of selective excitation of multiple‐quantum transitions , 1980 .

[2]  W. Zurek II. Quantum mechanics and measurement theoryEnvironment-induced decoherence and the transition from quantum to classical , 1993 .

[3]  Kikkawa,et al.  All-optical magnetic resonance in semiconductors , 2000, Science.

[4]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[5]  A. Pines,et al.  NEW APPROACH TO HIGH RESOLUTION PROTON NMR IN SOLIDS: DEUTERIUM SPIN-DECOUPLING BY MULTIPLE-QUANTUM TRANSITIONS , 1976 .

[6]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[7]  O. W. Sørensen A universal bound on spin dynamics , 1990 .

[8]  Dolores C. Miller,et al.  NUCLEAR MAGNETIC RESONANCE QUANTUM COMPUTING USING LIQUID CRYSTAL SOLVENTS , 1999, quant-ph/9907063.

[9]  Arvind,et al.  Implementing quantum-logic operations, pseudopure states, and the Deutsch-Jozsa algorithm using noncommuting selective pulses in NMR , 1999, quant-ph/9906027.

[10]  Seth Lloyd,et al.  Experimental demonstration of greenberger-horne-zeilinger correlations using nuclear magnetic resonance , 2000 .

[11]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[12]  Barenco,et al.  Approximate quantum Fourier transform and decoherence. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[13]  R. Freeman,et al.  Composite pulse decoupling , 1981 .

[14]  S. Glaser,et al.  Unitary control in quantum ensembles: maximizing signal intensity in coherent spectroscopy , 1998, Science.

[15]  M. Munowitz,et al.  Coherence and NMR , 1988 .

[16]  A. Saupe Das Protonenresonanzspektrum von orientiertem Benzol in nematisch-kristallinflüssiger Lösung , 1965 .

[17]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[18]  R. Martinez,et al.  An algorithmic benchmark for quantum information processing , 2000, Nature.

[19]  D. Leung,et al.  Experimental realization of a quantum algorithm , 1998, Nature.

[20]  N. Linden,et al.  NMR quantum logic gates for homonuclear spin systems , 1999, quant-ph/9907003.

[21]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[22]  John S. Waugh,et al.  Theory of broadband spin decoupling , 1982 .

[23]  A. Pines,et al.  Zero field NMR and NQR , 1985 .

[24]  G. Bodenhausen,et al.  Average Liouvillian theory revisited: cross-correlated relaxation between chemical shift anisotropy and dipolar couplings in the rotating frame in nuclear magnetic resonance , 1999 .

[25]  Debbie Leung,et al.  Experimental realization of a two-bit phase damping quantum code , 1999 .

[26]  A. Pines,et al.  Violation of the Spin-Temperature Hypothesis , 1970 .

[27]  D. G. Cory,et al.  FIRST DIRECT MEASUREMENT OF THE SPIN DIFFUSION RATE IN A HOMOGENOUS SOLID , 1998 .

[28]  R. Wilcox Exponential Operators and Parameter Differentiation in Quantum Physics , 1967 .

[29]  Isaac L. Chuang,et al.  Demonstration of quantum logic gates in liquid crystal nuclear magnetic resonance , 2000 .

[30]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[31]  Timothy F. Havel,et al.  Quantum Simulations on a Quantum Computer , 1999, quant-ph/9905045.

[32]  I. Pykett,et al.  NMR imaging in medicine. , 1982, Scientific American.

[33]  Pines,et al.  Indirect phase detection of NMR spinor transitions. , 1986, Physical review letters.

[34]  Alexander Pines,et al.  Lectures on pulsed NMR , 1986 .

[35]  D. Cory,et al.  Time-suspension multiple-pulse sequences: applications to solid-state imaging , 1990 .

[36]  Gil Navon,et al.  Enhancement of Solution NMR and MRI with Laser-Polarized Xenon , 1996, Science.

[37]  Timothy F. Havel,et al.  Generalized methods for the development of quantum logic gates for an NMR quantum information processor , 1999 .

[38]  Timothy F. Havel,et al.  Expressing the operations of quantum computing in multiparticle geometric algebra , 1998 .

[39]  C. Hilbers,et al.  A simple formalism for the description of multiple-pulse experiments. Application to a weakly coupled two-spin ( I = {1}/{2}) system , 1983 .

[40]  Jonathan A. Jones,et al.  Implementation of a quantum search algorithm on a quantum computer , 1998, Nature.

[41]  S. Lloyd Quantum-Mechanical Computers , 1995 .

[42]  O. W. Sørensen,et al.  Polarization transfer experiments in high-resolution NMR spectroscopy , 1989 .

[43]  David Collins,et al.  NMR quantum computation with indirectly coupled gates , 2000 .

[44]  A. An NMR Technique for Tracing Out the Carbon Skeleton of an Organic Molecule , 2022 .

[45]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[46]  R. L. Garwin,et al.  Spin Echo Serial Storage Memory , 1955 .

[47]  N. Bloembergen,et al.  On the interaction of nuclear spins in a crystalline lattice , 1949 .

[48]  Andris Ambainis,et al.  Computing with highly mixed states , 2006, JACM.

[49]  A. Pines,et al.  Principles and Applications of Multiple‐Quantum Nmr , 2007 .

[50]  Nicolaas Bloembergen,et al.  Radiation Damping in Magnetic Resonance Experiments , 1954 .

[51]  A. Redfield,et al.  Nuclear Magnetism: Order and Disorder , 1982 .

[52]  Timothy F. Havel,et al.  The effective Hamiltonian of the Pound-Overhauser controlled-NOT gate , 1998, quant-ph/9809045.

[53]  Rolf Landauer,et al.  Is quantum mechanics useful? , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[54]  N. Gershenfeld,et al.  Experimental Implementation of Fast Quantum Searching , 1998 .

[55]  E. R. Andrew,et al.  Removal of Dipolar Broadening of Nuclear Magnetic Resonance Spectra of Solids by Specimen Rotation , 1959, Nature.

[56]  Timothy F. Havel,et al.  Quantum simulation of a three-body-interaction Hamiltonian on an NMR quantum computer , 1999, quant-ph/9908012.

[57]  Eli Yablonovitch,et al.  Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures , 1999, quant-ph/9905096.

[58]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[59]  Alfred G. Redfield,et al.  On the Theory of Relaxation Processes , 1957, IBM J. Res. Dev..

[60]  U. Vazirani,et al.  Scalable NMR Quantum Computation , 1998, quant-ph/9804060.

[61]  S. Meiboom,et al.  Theory of proton NMR with deuteron decoupling in nematic liquid crystalline solvents , 1973 .

[62]  E M Fortunato,et al.  Implementation of the quantum Fourier transform. , 2001, Physical review letters.

[63]  K. Mueller,et al.  Dynamic-Angle Spinning of Quadrupolar Nuclei , 1990 .

[64]  Raymond Laflamme,et al.  Quantum Computation and Quadratically Signed Weight Enumerators , 1999, ArXiv.

[65]  A. N. Garroway,et al.  Zero quantum NMR in the rotating frame: J cross polarization in AXN systems , 1981 .

[66]  E. Charnaya,et al.  Direct measurement of the lattice and impurity components of nuclear spin-lattice relaxation under magnetic-saturation conditions , 1992 .

[67]  E. Knill,et al.  EFFECTIVE PURE STATES FOR BULK QUANTUM COMPUTATION , 1997, quant-ph/9706053.

[68]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[69]  U. Haeberlen Multiple pulse techniques in solid state NMR , 1985 .

[70]  D. T. Pegg,et al.  Distortionless enhancement of NMR signals by polarization transfer , 1982 .

[71]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[72]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[73]  G. Castagnoli,et al.  Geometric quantum computation with NMR , 1999, quant-ph/9910052.

[74]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[75]  B. Neganov,et al.  DYNAMIC POLARIZATION OF PROTONS AT 0.5 K , 1963 .

[76]  Timothy F. Havel,et al.  Nuclear magnetic resonance spectroscopy: an experimentally accessible paradigm for quantum computing , 1997, quant-ph/9709001.

[77]  Lloyd,et al.  Almost any quantum logic gate is universal. , 1995, Physical review letters.

[78]  David G. Cory,et al.  A generalized k-space formalism for treating the spatial aspects of a variety of NMR experiments , 1998 .

[79]  R. R. Ernst,et al.  Net polarization transfer via a J-ordered state for signal enhancement of low-sensitivity nuclei , 1980 .

[80]  Unruh Maintaining coherence in quantum computers. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[81]  W. Boer,et al.  Dynamic polarization of protons, deuterons, and carbon-13 nuclei: Thermal contact between nuclear spins and an electron spin-spin interaction reservoir , 1974 .

[82]  C. Jeffries,et al.  Proton Spin-Lattice Relaxation in (Nd, La) 2 Mg 3 (NO 3 ) 12 .24H 2 O in High Fields and Low Temperatures , 1967 .

[83]  J. Jeener Superoperators in Magnetic Resonance , 1982 .

[84]  Experimental realization of discrete fourier transformation on NMR quantum computers , 1999, quant-ph/9905083.

[85]  Schumacher,et al.  Sending entanglement through noisy quantum channels. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[86]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[87]  A. Pines,et al.  Multiple‐quantum dynamics in solid state NMR , 1985 .

[88]  E. Knill Approximation by Quantum Circuits , 1995 .

[89]  Timothy F. Havel,et al.  Construction and implementation of NMR quantum logic gates for two spin systems. , 1999, Journal of magnetic resonance.

[90]  U. Haeberlen,et al.  Approach to High-Resolution nmr in Solids , 1968 .

[91]  A. Steane Quantum Computing , 1997, quant-ph/9708022.

[92]  Warren S. Warren,et al.  Selective Excitation of Multiple-Quantum Coherence in Nuclear Magnetic Resonance , 1979 .

[93]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[94]  W. G. Proctor,et al.  SATURATION OF NUCLEAR ELECTRIC QUADRUPOLE ENERGY LEVELS BY ULTRASONIC EXCITATION , 1955 .

[95]  E. Knill,et al.  Resilient Quantum Computation , 1998 .

[96]  J. A. Jones,et al.  NMR Quantum Computation: A Critical Evaluation , 2000, quant-ph/0002085.

[97]  Berlin Heidelberg,et al.  Principles of Magnetic Resonance , 1991 .

[98]  N. B. Freeman An implementation of the Deutsch-Jozsa algorithm on a three-qubit NMR quantum computer , 1998, quant-ph/9808039.

[99]  Raymond Laflamme,et al.  NMR Greenberger–Horne–Zeilinger states , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[100]  Peter W. Shor,et al.  Quantum Information Theory , 1998, IEEE Trans. Inf. Theory.

[101]  S. Glaser,et al.  Realization of a 5-bit nmr quantum computer using a new molecular architecture , 1999, quant-ph/9905087.

[102]  E. Hahn,et al.  Nuclear Double Resonance in the Rotating Frame , 1962 .

[103]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[104]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[105]  E. Knill,et al.  Power of One Bit of Quantum Information , 1998, quant-ph/9802037.

[106]  H. Carr,et al.  The Principles of Nuclear Magnetism , 1961 .

[107]  R. R. Ernst,et al.  Two‐dimensional spectroscopy. Application to nuclear magnetic resonance , 1976 .

[108]  E. R. Andrew Spin Temperature and Nuclear Magnetic Resonance in Solids , 1971 .

[109]  David P. DiVincenzo,et al.  Real and realistic quantum computers , 1998, Nature.

[110]  M. B. Plenio,et al.  Efficient factorization with a single pure qubit , 2000 .

[111]  C. Jeffries Dynamic nuclear orientation , 1963 .

[112]  Timothy F. Havel,et al.  EXPERIMENTAL QUANTUM ERROR CORRECTION , 1998, quant-ph/9802018.

[113]  Richard R. Ernst,et al.  Product operator formalism for the description of NMR pulse experiments , 1984 .

[114]  R. Wind,et al.  Applications of dynamic nuclear polarization in 13C NMR in solids , 1985 .

[115]  K. J. Packer,et al.  The use of single-spin operator basis sets in the N.M.R. spectroscopy of scalar-coupled spin systems , 1983 .

[116]  S Lloyd,et al.  A Potentially Realizable Quantum Computer , 1993, Science.

[117]  Haeberlen Ulrich,et al.  High resolution NMR in solids : selective averaging , 1976 .

[118]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[119]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[120]  Debbie W. Leung,et al.  Quantum algorithms which accept hot qubit inputs , 1999 .

[121]  D. Leung,et al.  Bulk quantum computation with nuclear magnetic resonance: theory and experiment , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[122]  U. Haeberlen,et al.  Coherent Averaging Effects in Magnetic Resonance , 1968 .