NMR Based Quantum Information Processing: Achievements and Prospects
暂无分享,去创建一个
Timothy F. Havel | E. Knill | R. Laflamme | D. Cory | W. Zurek | S. Lloyd | L. Viola | C. Negrevergne | N. Boulant | M. Pravia | Y. Sharf | G. Boutis | E. Fortunato | R. Martinez | G. Teklemariam | Y. Weinstein
[1] Warren S. Warren,et al. Theory of selective excitation of multiple‐quantum transitions , 1980 .
[2] W. Zurek. II. Quantum mechanics and measurement theoryEnvironment-induced decoherence and the transition from quantum to classical , 1993 .
[3] Kikkawa,et al. All-optical magnetic resonance in semiconductors , 2000, Science.
[4] Shor,et al. Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[5] A. Pines,et al. NEW APPROACH TO HIGH RESOLUTION PROTON NMR IN SOLIDS: DEUTERIUM SPIN-DECOUPLING BY MULTIPLE-QUANTUM TRANSITIONS , 1976 .
[6] J. Preskill. Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[7] O. W. Sørensen. A universal bound on spin dynamics , 1990 .
[8] Dolores C. Miller,et al. NUCLEAR MAGNETIC RESONANCE QUANTUM COMPUTING USING LIQUID CRYSTAL SOLVENTS , 1999, quant-ph/9907063.
[9] Arvind,et al. Implementing quantum-logic operations, pseudopure states, and the Deutsch-Jozsa algorithm using noncommuting selective pulses in NMR , 1999, quant-ph/9906027.
[10] Seth Lloyd,et al. Experimental demonstration of greenberger-horne-zeilinger correlations using nuclear magnetic resonance , 2000 .
[11] G. Bodenhausen,et al. Principles of nuclear magnetic resonance in one and two dimensions , 1987 .
[12] Barenco,et al. Approximate quantum Fourier transform and decoherence. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[13] R. Freeman,et al. Composite pulse decoupling , 1981 .
[14] S. Glaser,et al. Unitary control in quantum ensembles: maximizing signal intensity in coherent spectroscopy , 1998, Science.
[15] M. Munowitz,et al. Coherence and NMR , 1988 .
[16] A. Saupe. Das Protonenresonanzspektrum von orientiertem Benzol in nematisch-kristallinflüssiger Lösung , 1965 .
[17] D. DiVincenzo,et al. The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.
[18] R. Martinez,et al. An algorithmic benchmark for quantum information processing , 2000, Nature.
[19] D. Leung,et al. Experimental realization of a quantum algorithm , 1998, Nature.
[20] N. Linden,et al. NMR quantum logic gates for homonuclear spin systems , 1999, quant-ph/9907003.
[21] A. Kitaev. Quantum computations: algorithms and error correction , 1997 .
[22] John S. Waugh,et al. Theory of broadband spin decoupling , 1982 .
[23] A. Pines,et al. Zero field NMR and NQR , 1985 .
[24] G. Bodenhausen,et al. Average Liouvillian theory revisited: cross-correlated relaxation between chemical shift anisotropy and dipolar couplings in the rotating frame in nuclear magnetic resonance , 1999 .
[25] Debbie Leung,et al. Experimental realization of a two-bit phase damping quantum code , 1999 .
[26] A. Pines,et al. Violation of the Spin-Temperature Hypothesis , 1970 .
[27] D. G. Cory,et al. FIRST DIRECT MEASUREMENT OF THE SPIN DIFFUSION RATE IN A HOMOGENOUS SOLID , 1998 .
[28] R. Wilcox. Exponential Operators and Parameter Differentiation in Quantum Physics , 1967 .
[29] Isaac L. Chuang,et al. Demonstration of quantum logic gates in liquid crystal nuclear magnetic resonance , 2000 .
[30] E. Knill,et al. DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.
[31] Timothy F. Havel,et al. Quantum Simulations on a Quantum Computer , 1999, quant-ph/9905045.
[32] I. Pykett,et al. NMR imaging in medicine. , 1982, Scientific American.
[33] Pines,et al. Indirect phase detection of NMR spinor transitions. , 1986, Physical review letters.
[34] Alexander Pines,et al. Lectures on pulsed NMR , 1986 .
[35] D. Cory,et al. Time-suspension multiple-pulse sequences: applications to solid-state imaging , 1990 .
[36] Gil Navon,et al. Enhancement of Solution NMR and MRI with Laser-Polarized Xenon , 1996, Science.
[37] Timothy F. Havel,et al. Generalized methods for the development of quantum logic gates for an NMR quantum information processor , 1999 .
[38] Timothy F. Havel,et al. Expressing the operations of quantum computing in multiparticle geometric algebra , 1998 .
[39] C. Hilbers,et al. A simple formalism for the description of multiple-pulse experiments. Application to a weakly coupled two-spin ( I = {1}/{2}) system , 1983 .
[40] Jonathan A. Jones,et al. Implementation of a quantum search algorithm on a quantum computer , 1998, Nature.
[41] S. Lloyd. Quantum-Mechanical Computers , 1995 .
[42] O. W. Sørensen,et al. Polarization transfer experiments in high-resolution NMR spectroscopy , 1989 .
[43] David Collins,et al. NMR quantum computation with indirectly coupled gates , 2000 .
[44] A.. An NMR Technique for Tracing Out the Carbon Skeleton of an Organic Molecule , 2022 .
[45] N. Gershenfeld,et al. Bulk Spin-Resonance Quantum Computation , 1997, Science.
[46] R. L. Garwin,et al. Spin Echo Serial Storage Memory , 1955 .
[47] N. Bloembergen,et al. On the interaction of nuclear spins in a crystalline lattice , 1949 .
[48] Andris Ambainis,et al. Computing with highly mixed states , 2006, JACM.
[49] A. Pines,et al. Principles and Applications of Multiple‐Quantum Nmr , 2007 .
[50] Nicolaas Bloembergen,et al. Radiation Damping in Magnetic Resonance Experiments , 1954 .
[51] A. Redfield,et al. Nuclear Magnetism: Order and Disorder , 1982 .
[52] Timothy F. Havel,et al. The effective Hamiltonian of the Pound-Overhauser controlled-NOT gate , 1998, quant-ph/9809045.
[53] Rolf Landauer,et al. Is quantum mechanics useful? , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.
[54] N. Gershenfeld,et al. Experimental Implementation of Fast Quantum Searching , 1998 .
[55] E. R. Andrew,et al. Removal of Dipolar Broadening of Nuclear Magnetic Resonance Spectra of Solids by Specimen Rotation , 1959, Nature.
[56] Timothy F. Havel,et al. Quantum simulation of a three-body-interaction Hamiltonian on an NMR quantum computer , 1999, quant-ph/9908012.
[57] Eli Yablonovitch,et al. Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures , 1999, quant-ph/9905096.
[58] S. Lloyd,et al. DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.
[59] Alfred G. Redfield,et al. On the Theory of Relaxation Processes , 1957, IBM J. Res. Dev..
[60] U. Vazirani,et al. Scalable NMR Quantum Computation , 1998, quant-ph/9804060.
[61] S. Meiboom,et al. Theory of proton NMR with deuteron decoupling in nematic liquid crystalline solvents , 1973 .
[62] E M Fortunato,et al. Implementation of the quantum Fourier transform. , 2001, Physical review letters.
[63] K. Mueller,et al. Dynamic-Angle Spinning of Quadrupolar Nuclei , 1990 .
[64] Raymond Laflamme,et al. Quantum Computation and Quadratically Signed Weight Enumerators , 1999, ArXiv.
[65] A. N. Garroway,et al. Zero quantum NMR in the rotating frame: J cross polarization in AXN systems , 1981 .
[66] E. Charnaya,et al. Direct measurement of the lattice and impurity components of nuclear spin-lattice relaxation under magnetic-saturation conditions , 1992 .
[67] E. Knill,et al. EFFECTIVE PURE STATES FOR BULK QUANTUM COMPUTATION , 1997, quant-ph/9706053.
[68] A. Steane. Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[69] U. Haeberlen. Multiple pulse techniques in solid state NMR , 1985 .
[70] D. T. Pegg,et al. Distortionless enhancement of NMR signals by polarization transfer , 1982 .
[71] Viola,et al. Theory of quantum error correction for general noise , 2000, Physical review letters.
[72] Daniel A. Lidar,et al. Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.
[73] G. Castagnoli,et al. Geometric quantum computation with NMR , 1999, quant-ph/9910052.
[74] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[75] B. Neganov,et al. DYNAMIC POLARIZATION OF PROTONS AT 0.5 K , 1963 .
[76] Timothy F. Havel,et al. Nuclear magnetic resonance spectroscopy: an experimentally accessible paradigm for quantum computing , 1997, quant-ph/9709001.
[77] Lloyd,et al. Almost any quantum logic gate is universal. , 1995, Physical review letters.
[78] David G. Cory,et al. A generalized k-space formalism for treating the spatial aspects of a variety of NMR experiments , 1998 .
[79] R. R. Ernst,et al. Net polarization transfer via a J-ordered state for signal enhancement of low-sensitivity nuclei , 1980 .
[80] Unruh. Maintaining coherence in quantum computers. , 1994, Physical review. A, Atomic, molecular, and optical physics.
[81] W. Boer,et al. Dynamic polarization of protons, deuterons, and carbon-13 nuclei: Thermal contact between nuclear spins and an electron spin-spin interaction reservoir , 1974 .
[82] C. Jeffries,et al. Proton Spin-Lattice Relaxation in (Nd, La) 2 Mg 3 (NO 3 ) 12 .24H 2 O in High Fields and Low Temperatures , 1967 .
[83] J. Jeener. Superoperators in Magnetic Resonance , 1982 .
[84] Experimental realization of discrete fourier transformation on NMR quantum computers , 1999, quant-ph/9905083.
[85] Schumacher,et al. Sending entanglement through noisy quantum channels. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[86] DiVincenzo. Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.
[87] A. Pines,et al. Multiple‐quantum dynamics in solid state NMR , 1985 .
[88] E. Knill. Approximation by Quantum Circuits , 1995 .
[89] Timothy F. Havel,et al. Construction and implementation of NMR quantum logic gates for two spin systems. , 1999, Journal of magnetic resonance.
[90] U. Haeberlen,et al. Approach to High-Resolution nmr in Solids , 1968 .
[91] A. Steane. Quantum Computing , 1997, quant-ph/9708022.
[92] Warren S. Warren,et al. Selective Excitation of Multiple-Quantum Coherence in Nuclear Magnetic Resonance , 1979 .
[93] P. Zanardi,et al. Noiseless Quantum Codes , 1997, quant-ph/9705044.
[94] W. G. Proctor,et al. SATURATION OF NUCLEAR ELECTRIC QUADRUPOLE ENERGY LEVELS BY ULTRASONIC EXCITATION , 1955 .
[95] E. Knill,et al. Resilient Quantum Computation , 1998 .
[96] J. A. Jones,et al. NMR Quantum Computation: A Critical Evaluation , 2000, quant-ph/0002085.
[97] Berlin Heidelberg,et al. Principles of Magnetic Resonance , 1991 .
[98] N. B. Freeman. An implementation of the Deutsch-Jozsa algorithm on a three-qubit NMR quantum computer , 1998, quant-ph/9808039.
[99] Raymond Laflamme,et al. NMR Greenberger–Horne–Zeilinger states , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[100] Peter W. Shor,et al. Quantum Information Theory , 1998, IEEE Trans. Inf. Theory.
[101] S. Glaser,et al. Realization of a 5-bit nmr quantum computer using a new molecular architecture , 1999, quant-ph/9905087.
[102] E. Hahn,et al. Nuclear Double Resonance in the Rotating Frame , 1962 .
[103] Peter W. Shor,et al. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..
[104] E. Purcell,et al. Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .
[105] E. Knill,et al. Power of One Bit of Quantum Information , 1998, quant-ph/9802037.
[106] H. Carr,et al. The Principles of Nuclear Magnetism , 1961 .
[107] R. R. Ernst,et al. Two‐dimensional spectroscopy. Application to nuclear magnetic resonance , 1976 .
[108] E. R. Andrew. Spin Temperature and Nuclear Magnetic Resonance in Solids , 1971 .
[109] David P. DiVincenzo,et al. Real and realistic quantum computers , 1998, Nature.
[110] M. B. Plenio,et al. Efficient factorization with a single pure qubit , 2000 .
[111] C. Jeffries. Dynamic nuclear orientation , 1963 .
[112] Timothy F. Havel,et al. EXPERIMENTAL QUANTUM ERROR CORRECTION , 1998, quant-ph/9802018.
[113] Richard R. Ernst,et al. Product operator formalism for the description of NMR pulse experiments , 1984 .
[114] R. Wind,et al. Applications of dynamic nuclear polarization in 13C NMR in solids , 1985 .
[115] K. J. Packer,et al. The use of single-spin operator basis sets in the N.M.R. spectroscopy of scalar-coupled spin systems , 1983 .
[116] S Lloyd,et al. A Potentially Realizable Quantum Computer , 1993, Science.
[117] Haeberlen Ulrich,et al. High resolution NMR in solids : selective averaging , 1976 .
[118] B. E. Kane. A silicon-based nuclear spin quantum computer , 1998, Nature.
[119] Dorit Aharonov,et al. Fault-tolerant quantum computation with constant error , 1997, STOC '97.
[120] Debbie W. Leung,et al. Quantum algorithms which accept hot qubit inputs , 1999 .
[121] D. Leung,et al. Bulk quantum computation with nuclear magnetic resonance: theory and experiment , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[122] U. Haeberlen,et al. Coherent Averaging Effects in Magnetic Resonance , 1968 .