Thermodynamic Analysis of ZrB2–SiC Oxidation: Formation of a SiC‐Depleted Region

A thermodynamic model was developed to explain the formation of a SiC-depleted layer during ZrB2–SiC oxidation in air at 1500°C. The proposed model suggests that a structure consisting of (1) a silica-rich layer, (2) a Zr-rich oxidized layer, and (3) a SiC-depleted zirconium diboride layer is thermodynamically stable. The SiC-depleted layer developed due to active oxidation of SiC. The oxygen partial pressure in the SiC-depleted layer was calculated to lie between 4.0 × 10−14 and 1.8 × 10−11 Pa. Even though SiC underwent active oxidation, the overall process was consistent with passive oxidation and the formation of a protective surface layer.

[1]  R. Naslain,et al.  A theoretical and experimental approach to the active-to-passive transition in the oxidation of silicon carbide: Experiments at high temperatures and low total pressures , 1998 .

[2]  A. Bellosi,et al.  Advances in microstructure and mechanical properties of zirconium diboride based ceramics , 2003 .

[3]  D. Kalish,et al.  RESEARCH AND DEVELOPMENT OF REFRACTORY OXIDATION RESISTANT DIBORIDES , 1968 .

[4]  W. Fahrenholtz The ZrB2 Volatility Diagram , 2005 .

[5]  Donald T. Ellerby,et al.  High‐Strength Zirconium Diboride‐Based Ceramics , 2004 .

[6]  J. Margrave,et al.  The Oxidation Kinetics of Zirconium Diboride and Zirconium Carbide at High Temperatures , 1964 .

[7]  Rajiv K. Kalia,et al.  A Perspective on Modeling Materials in Extreme Environments: Oxidation of Ultrahigh-Temperature Ceramics , 2006 .

[8]  E. Opila,et al.  Oxidation of Zrb2‐Sic , 2008 .

[9]  J. Zaykoski,et al.  Oxidation-based materials selection for 2000°C + hypersonic aerosurfaces: Theoretical considerations and historical experience , 2004 .

[10]  Alida Bellosi,et al.  Processing and properties of zirconium diboride-based composites , 2002 .

[11]  Mark M. Opeka,et al.  Mechanical, Thermal, and Oxidation Properties of Refractory Hafnium and zirconium Compounds , 1999 .

[12]  Jonathan A. Salem,et al.  Evaluation of ultra-high temperature ceramics foraeropropulsion use , 2002 .

[13]  J. Berkowitz‐Mattuck High‐Temperature Oxidation III . Zirconium and Hafnium Diborides , 1966 .

[14]  R. R. Dils,et al.  High‐Temperature Oxidation II . Molybdenum Silicides , 1964 .

[15]  H. C. Graham,et al.  Thermogravi metric Study of the Oxidation of ZrB2 in the Temperature Range of 800° to 1500°C , 1971 .

[16]  J. Farjas,et al.  Passive‐Oxidation Kinetics of SiC Microparticles , 2004 .

[17]  Donald T. Ellerby,et al.  Processing, properties and arc jet oxidation of hafnium diboride/silicon carbide ultra high temperature ceramics , 2004 .

[18]  Guo‐Jun Zhang,et al.  Reactive Hot Pressing of ZrB2–SiC Composites , 2004 .

[19]  H. H. Davis,et al.  Microstructural Features of Oxide Scales Formed on Zirconium Diboride Materials , 1971 .

[20]  Alida Bellosi,et al.  Oxidation of ZrB2-Based Ceramics in Dry Air , 2003 .

[21]  N. Jacobson Corrosion of Silicon-Based Ceramics in Combustion Environments , 1993 .

[22]  Arthur H. Heuer,et al.  Volatility Diagrams for Silica, Silicon Nitride, and Silicon Carbide and Their Application to High‐Temperature Decomposition and Oxidation , 1990 .

[23]  A. Heuer,et al.  REVIEW—Graphical Displays of the Thermodynamics of High‐Temperature Gas‐Solid Reactions and Their Application to Oxidation of Metals and Evaporation of Oxides , 1985 .

[24]  I. Worsley,et al.  The oxidation of titanium diboride and zirconium diboride at high temperatures , 1968 .

[25]  Paul Kolodziej,et al.  Aerothermal Performance Constraints for Hypervelocity Small Radius Unswept Leading Edges and Nosetips , 1997 .

[26]  J. Spain,et al.  Designing for ultrahigh-temperature applications: The mechanical and thermal properties of HfB2, HfCx, HfNx and αHf(N) , 2004 .

[27]  Q. Nguyen,et al.  Oxidation of Ultrahigh Temperature Ceramics in Water Vapor , 2004 .