Thermodynamic Analysis of ZrB2–SiC Oxidation: Formation of a SiC‐Depleted Region
暂无分享,去创建一个
[1] R. Naslain,et al. A theoretical and experimental approach to the active-to-passive transition in the oxidation of silicon carbide: Experiments at high temperatures and low total pressures , 1998 .
[2] A. Bellosi,et al. Advances in microstructure and mechanical properties of zirconium diboride based ceramics , 2003 .
[3] D. Kalish,et al. RESEARCH AND DEVELOPMENT OF REFRACTORY OXIDATION RESISTANT DIBORIDES , 1968 .
[4] W. Fahrenholtz. The ZrB2 Volatility Diagram , 2005 .
[5] Donald T. Ellerby,et al. High‐Strength Zirconium Diboride‐Based Ceramics , 2004 .
[6] J. Margrave,et al. The Oxidation Kinetics of Zirconium Diboride and Zirconium Carbide at High Temperatures , 1964 .
[7] Rajiv K. Kalia,et al. A Perspective on Modeling Materials in Extreme Environments: Oxidation of Ultrahigh-Temperature Ceramics , 2006 .
[8] E. Opila,et al. Oxidation of Zrb2‐Sic , 2008 .
[9] J. Zaykoski,et al. Oxidation-based materials selection for 2000°C + hypersonic aerosurfaces: Theoretical considerations and historical experience , 2004 .
[10] Alida Bellosi,et al. Processing and properties of zirconium diboride-based composites , 2002 .
[11] Mark M. Opeka,et al. Mechanical, Thermal, and Oxidation Properties of Refractory Hafnium and zirconium Compounds , 1999 .
[12] Jonathan A. Salem,et al. Evaluation of ultra-high temperature ceramics foraeropropulsion use , 2002 .
[13] J. Berkowitz‐Mattuck. High‐Temperature Oxidation III . Zirconium and Hafnium Diborides , 1966 .
[14] R. R. Dils,et al. High‐Temperature Oxidation II . Molybdenum Silicides , 1964 .
[15] H. C. Graham,et al. Thermogravi metric Study of the Oxidation of ZrB2 in the Temperature Range of 800° to 1500°C , 1971 .
[16] J. Farjas,et al. Passive‐Oxidation Kinetics of SiC Microparticles , 2004 .
[17] Donald T. Ellerby,et al. Processing, properties and arc jet oxidation of hafnium diboride/silicon carbide ultra high temperature ceramics , 2004 .
[18] Guo‐Jun Zhang,et al. Reactive Hot Pressing of ZrB2–SiC Composites , 2004 .
[19] H. H. Davis,et al. Microstructural Features of Oxide Scales Formed on Zirconium Diboride Materials , 1971 .
[20] Alida Bellosi,et al. Oxidation of ZrB2-Based Ceramics in Dry Air , 2003 .
[21] N. Jacobson. Corrosion of Silicon-Based Ceramics in Combustion Environments , 1993 .
[22] Arthur H. Heuer,et al. Volatility Diagrams for Silica, Silicon Nitride, and Silicon Carbide and Their Application to High‐Temperature Decomposition and Oxidation , 1990 .
[23] A. Heuer,et al. REVIEW—Graphical Displays of the Thermodynamics of High‐Temperature Gas‐Solid Reactions and Their Application to Oxidation of Metals and Evaporation of Oxides , 1985 .
[24] I. Worsley,et al. The oxidation of titanium diboride and zirconium diboride at high temperatures , 1968 .
[25] Paul Kolodziej,et al. Aerothermal Performance Constraints for Hypervelocity Small Radius Unswept Leading Edges and Nosetips , 1997 .
[26] J. Spain,et al. Designing for ultrahigh-temperature applications: The mechanical and thermal properties of HfB2, HfCx, HfNx and αHf(N) , 2004 .
[27] Q. Nguyen,et al. Oxidation of Ultrahigh Temperature Ceramics in Water Vapor , 2004 .