An automatic arrhythmia classification model based on improved Marine Predators Algorithm and Convolutions Neural Networks

[1]  Robertas Damasevicius,et al.  COVID-19 image classification using deep features and fractional-order marine predators algorithm , 2020, Scientific Reports.

[2]  Yuhui Shi,et al.  Metaheuristic research: a comprehensive survey , 2018, Artificial Intelligence Review.

[3]  Huazhong Yang,et al.  A global and updatable ECG beat classification system based on recurrent neural networks and active learning , 2019, Inf. Sci..

[4]  Jing Zhang,et al.  ECG-based multi-class arrhythmia detection using spatio-temporal attention-based convolutional recurrent neural network , 2020, Artif. Intell. Medicine.

[5]  John David Filmalter,et al.  First Descriptions of the Behavior of Silky Sharks, Carcharhinus Falciformis, Around Drifting Fish Aggregating Devices in the Indian Ocean , 2011 .

[6]  Navid Razmjooy,et al.  A new configuration of autonomous CHP system based on improved version of marine predators algorithm: A case study , 2021 .

[7]  Moncef Gabbouj,et al.  Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks , 2016, IEEE Transactions on Biomedical Engineering.

[8]  Matin Hashemi,et al.  ECG Classification Algorithm Based on STDP and R-STDP Neural Networks for Real-Time Monitoring on Ultra Low-Power Personal Wearable Devices , 2019, IEEE Transactions on Biomedical Circuits and Systems.

[9]  Ajith Abraham,et al.  Heart disease detection using hybrid of bacterial foraging and particle swarm optimization , 2019, Evolving Systems.

[10]  Rajeev Sharma,et al.  Baseline wander and power line interference removal from ECG signals using eigenvalue decomposition , 2018, Biomed. Signal Process. Control..

[11]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[12]  Taher A. Shehabeldeen,et al.  Utilization of Random Vector Functional Link integrated with Marine Predators Algorithm for tensile behavior prediction of dissimilar friction stir welded aluminum alloy joints , 2020 .

[13]  Chandan Chakraborty,et al.  Cardiac decision making using higher order spectra , 2013, Biomed. Signal Process. Control..

[14]  Masoud Daneshtalab,et al.  A review on deep learning methods for ECG arrhythmia classification , 2020, Expert Syst. Appl. X.

[15]  Essam H. Houssein,et al.  A Hybrid Heartbeats Classification Approach Based on Marine Predators Algorithm and Convolution Neural Networks , 2021, IEEE Access.

[16]  M Suchetha,et al.  PSO optimized 1-D CNN-SVM architecture for real-time detection and classification applications , 2019, Comput. Biol. Medicine.

[17]  Aboul Ella Hassanien,et al.  Maximizing lifetime of large-scale wireless sensor networks using multi-objective whale optimization algorithm , 2019, Telecommun. Syst..

[18]  Mahmoud Hassaballah,et al.  A novel hybrid Harris hawks optimization and support vector machines for drug design and discovery , 2020, Comput. Chem. Eng..

[19]  Nitesh V. Chawla,et al.  Classification and knowledge discovery in protein databases , 2004, J. Biomed. Informatics.

[20]  B. S. Harish,et al.  Automated ECG Analysis for Localizing Thrombus in Culprit Artery Using Rule Based Information Fuzzy Network , 2020, Int. J. Interact. Multim. Artif. Intell..

[21]  P. Rajesh Kumar,et al.  An Efficient Optimized Feature Selection with Machine Learning Approach for ECG Biometric Recognition , 2020, IETE Journal of Research.

[22]  U. Rajendra Acharya,et al.  Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats , 2018, Comput. Biol. Medicine.

[23]  Essam H. Houssein,et al.  Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems , 2021, Expert Syst. Appl..

[24]  I. Daubechies,et al.  Factoring wavelet transforms into lifting steps , 1998 .

[25]  Srinivas Kalyanapu,et al.  Classification of ECG Heartbeat Arrhythmia: A Review , 2020 .

[26]  Lu Cao,et al.  Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System , 2016, Sensors.

[27]  Nabil Neggaz,et al.  An efficient ECG arrhythmia classification method based on Manta ray foraging optimization , 2021, Expert Syst. Appl..

[28]  Ki H. Chon,et al.  Atrial Fibrillation Detection Using an iPhone 4S , 2013, IEEE Transactions on Biomedical Engineering.

[29]  Aboul Ella Hassanien,et al.  A Hybrid EEG Signals Classification Approach Based on Grey Wolf Optimizer Enhanced SVMs for Epileptic Detection , 2017, AISI.

[30]  Leandro Nunes de Castro,et al.  The Clonal Selection Algorithm with Engineering Applications , 2011 .

[31]  Mahmoud Hassaballah,et al.  Lévy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems , 2020, Eng. Appl. Artif. Intell..

[32]  Victor Hugo C. de Albuquerque,et al.  A novel electrocardiogram feature extraction approach for cardiac arrhythmia classification , 2019, Future Gener. Comput. Syst..

[33]  David E. Goldberg,et al.  The compact genetic algorithm , 1999, IEEE Trans. Evol. Comput..

[34]  Giuseppe De Pietro,et al.  A deep learning approach for ECG-based heartbeat classification for arrhythmia detection , 2018, Future Gener. Comput. Syst..

[35]  Bilal Alatas,et al.  ACROA: Artificial Chemical Reaction Optimization Algorithm for global optimization , 2011, Expert Syst. Appl..

[36]  Salah Kamel,et al.  An improved Manta ray foraging optimizer for cost-effective emission dispatch problems , 2021, Eng. Appl. Artif. Intell..

[37]  Ahmed A. Elngar,et al.  A novel Black Widow Optimization algorithm for multilevel thresholding image segmentation , 2021, Expert Syst. Appl..

[38]  Yilmaz Kaya,et al.  1D-local binary pattern based feature extraction for classification of epileptic EEG signals , 2014, Appl. Math. Comput..

[39]  Alireza Karimi,et al.  A lumped parameter mathematical model to analyze the effects of tachycardia and bradycardia on the cardiovascular system , 2015 .

[40]  Hegazy Rezk,et al.  Marine Predators Algorithm Optimized Reduced Sensor Fuzzy-Logic Based Maximum Power Point Tracking of Fuel Cell-Battery Standalone Applications , 2021, IEEE Access.

[41]  Hany M. Hasanien,et al.  Parameters identification of solid oxide fuel cell for static and dynamic simulation using comprehensive learning dynamic multi-swarm marine predators algorithm , 2021 .

[42]  Nabil Neggaz,et al.  Enhanced Harris hawks optimization with genetic operators for selection chemical descriptors and compounds activities , 2021, Neural Computing and Applications.

[43]  U. Rajendra Acharya,et al.  Automated heartbeat classification and detection of arrhythmia using optimal orthogonal wavelet filters , 2019, Informatics in Medicine Unlocked.

[44]  Di Wang,et al.  Automatic recognition of arrhythmia based on principal component analysis network and linear support vector machine , 2018, Comput. Biol. Medicine.

[45]  Victor-Emil Neagoe,et al.  A Neuro-Fuzzy Approach to Classification of ECG Signals for Ischemic Heart Disease Diagnosis , 2003, AMIA.

[46]  Kemal Polat,et al.  Detection of ECG Arrhythmia using a differential expert system approach based on principal component analysis and least square support vector machine , 2007, Appl. Math. Comput..

[47]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[48]  Amir H. Gandomi,et al.  Marine Predators Algorithm: A nature-inspired metaheuristic , 2020, Expert Syst. Appl..

[49]  Zhengchun Hua,et al.  Automated arrhythmia classification based on a combination network of CNN and LSTM , 2020, Biomed. Signal Process. Control..

[50]  Victor Hugo C. de Albuquerque,et al.  Heart Arrhythmia Classification Based on Statistical Moments and Structural Co-occurrence , 2019, Circuits, Systems, and Signal Processing.

[51]  Ridha Ouni,et al.  Electrocardiogram heartbeat classification based on a deep convolutional neural network and focal loss , 2020, Comput. Biol. Medicine.

[52]  U. Rajendra Acharya,et al.  Automated diagnosis of Coronary Artery Disease using nonlinear features extracted from ECG signals , 2016, 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[53]  Annisa Darmawahyuni,et al.  An Automated ECG Beat Classification System Using Deep Neural Networks with an Unsupervised Feature Extraction Technique , 2019, Applied Sciences.

[54]  Kevin Kaergaard,et al.  A comprehensive performance analysis of EEMD-BLMS and DWT-NN hybrid algorithms for ECG denoising , 2016, Biomed. Signal Process. Control..

[55]  Jinsul Kim,et al.  An Automated ECG Beat Classification System Using Convolutional Neural Networks , 2016, 2016 6th International Conference on IT Convergence and Security (ICITCS).

[56]  Sandeep Raj,et al.  Sparse representation of ECG signals for automated recognition of cardiac arrhythmias , 2018, Expert Syst. Appl..

[57]  Seyedali Mirjalili,et al.  SCA: A Sine Cosine Algorithm for solving optimization problems , 2016, Knowl. Based Syst..

[58]  Mohamed Elhoseny,et al.  Hybrid Harris hawks optimization with cuckoo search for drug design and discovery in chemoinformatics , 2020, Scientific Reports.

[59]  Mohamed Elhoseny,et al.  A Hybrid COVID-19 Detection Model Using an Improved Marine Predators Algorithm and a Ranking-Based Diversity Reduction Strategy , 2020, IEEE Access.

[60]  Rohini K. Srihari,et al.  Feature selection for text categorization on imbalanced data , 2004, SKDD.

[61]  Chaoyi Pang,et al.  A cascaded classifier for multi-lead ECG based on feature fusion , 2019, Comput. Methods Programs Biomed..

[62]  Mohamed Hammad,et al.  A novel two-dimensional ECG feature extraction and classification algorithm based on convolution neural network for human authentication , 2019, Future Gener. Comput. Syst..

[63]  Nathalie Japkowicz,et al.  The Class Imbalance Problem: Significance and Strategies , 2000 .

[64]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[65]  R. Mehra Global public health problem of sudden cardiac death. , 2007, Journal of electrocardiology.

[66]  Min Zhou,et al.  ECG Classification Using Wavelet Packet Entropy and Random Forests , 2016, Entropy.

[67]  Ponnuthurai N. Suganthan,et al.  Task Scheduling in Cloud Computing based on Meta-heuristics: Review, Taxonomy, Open Challenges, and Future Trends , 2021, Swarm Evol. Comput..

[68]  Li Wan,et al.  Heartbeat classification using deep residual convolutional neural network from 2-lead electrocardiogram. , 2019, Journal of electrocardiology.

[69]  Enzo Pasquale Scilingo,et al.  A tool for the real-time evaluation of ECG signal quality and activity: Application to submaximal treadmill test in horses , 2020, Biomed. Signal Process. Control..

[70]  U. Rajendra Acharya,et al.  Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals , 2019, Neural Computing and Applications.

[71]  Amir H. Gandomi,et al.  Machine learning-based left ventricular hypertrophy detection using multi-lead ECG signal , 2020, Neural Computing and Applications.

[72]  Antonia Papandreou-Suppappola,et al.  Electrocardiogram Signal Modeling With Adaptive Parameter Estimation Using Sequential Bayesian Methods , 2014, IEEE Transactions on Signal Processing.

[73]  Seyedali Mirjalili,et al.  Henry gas solubility optimization: A novel physics-based algorithm , 2019, Future Gener. Comput. Syst..

[74]  ZhengYu-Jun Water wave optimization , 2015 .

[75]  Mehmet Engin,et al.  ECG beat classification using neuro-fuzzy network , 2004, Pattern Recognit. Lett..

[76]  Aboul Ella Hassanien,et al.  ECG signals classification: a review , 2017, Int. J. Intell. Eng. Informatics.

[77]  Ruxin Wang,et al.  Multi-class Arrhythmia detection from 12-lead varied-length ECG using Attention-based Time-Incremental Convolutional Neural Network , 2020, Inf. Fusion.

[78]  U. Rajendra Acharya,et al.  A deep convolutional neural network model to classify heartbeats , 2017, Comput. Biol. Medicine.