Risperidone oral disintegrating mini-tablets: A robust-product for pediatrics

Abstract This study was aimed at developing risperidone oral disintegrating mini-tablets (OD-mini-tablets) as age-appropriate formulations and to assess their suitability for infants and pediatric use. An experimental Box-Behnken design was applied to assure high quality of the OD-mini-tablets and reduce product variability. The design was employed to understand the influence of the critical excipient combinations on the production of OD-mini-tablets and thus guarantee the feasibility of obtaining products with dosage form uniformity. The variables selected were mannitol percent in Avicel (X1), swelling pressure of the superdisintegrant (X2), and the surface area of Aerosil as a glidant (X3). Risperidone-excipient compatibilities were investigated using FTIR and the spectra did not display any interaction. Fifteen formulations were prepared and evaluated for preand post-compression characteristics. The prepared ODmini- tablet batches were also assessed for disintegration in simulated salivary fluid (SSF, pH 6.2) and in reconstituted skimmed milk. The optimized formula fulfilled the requirements for crushing strength of 5 kN with minimal friability, disintegration times of 8.4 and 53.7 s in SSF and skimmed milk, respectively. This study therefore proposes the risperidone OD-mini-tablet formula having robust mechanical properties, uniform and precise dosing of medication with short disintegration time suitable for pediatric use.

[1]  M. Trevisan,et al.  Risperidone – Solid-state characterization and pharmaceutical compatibility using thermal and non-thermal techniques , 2013 .

[2]  Fernando J Muzzio,et al.  Effects of powder flow properties on capsule filling weight uniformity , 2013, Drug development and industrial pharmacy.

[3]  Ilven Mutlu,et al.  Characterization of 17-4 PH stainless steel foam for biomedical applications in simulated body fluid and artificial saliva environments. , 2013, Materials science & engineering. C, Materials for biological applications.

[4]  Ritesh M Pabari,et al.  Effect of a Disintegration Mechanism on Wetting, Water Absorption, and Disintegration Time of Orodispersible Tablets , 2012, Journal of young pharmacists : JYP.

[5]  M. E. Moreira,et al.  Adequacy of human milk viscosity to respond to infants with dysphagia: experimental study , 2011, Journal of applied oral science : revista FOB.

[6]  J. Breitkreutz,et al.  Orally disintegrating mini-tablets (ODMTs)--a novel solid oral dosage form for paediatric use. , 2011, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[7]  Jörg Breitkreutz,et al.  Oral drug delivery in personalized medicine: unmet needs and novel approaches. , 2011, International journal of pharmaceutics.

[8]  R. Canitano,et al.  Risperidone in the treatment of behavioral disorders associated with autism in children and adolescents , 2008, Neuropsychiatric disease and treatment.

[9]  Changquan Calvin Sun Mechanism of moisture induced variations in true density and compaction properties of microcrystalline cellulose. , 2008, International journal of pharmaceutics.

[10]  Shagufta Khan,et al.  Taste masking of ondansetron hydrochloride by polymer carrier system and formulation of rapid-disintegrating tablets , 2007, AAPS PharmSciTech.

[11]  D. Otter MILK | Physical and Chemical Properties , 2003 .

[12]  J. B. Mielck,et al.  Minitabletting: improving the compactability of paracetamol powder mixtures , 1998 .

[13]  Anne Mari Juppo,et al.  Relationship between breaking force and pore structure of lactose, glucose and mannitol tablets , 1996 .

[14]  D. L. Munday A Comparison of the Dissolution Characteristics of Theophylline from Film Coated Granules and Mini-Tablets , 1994 .

[15]  A. Peer,et al.  Pharmacokinetics of the novel antipsychotic agent risperidone and the prolactin response in healthy subjects , 1993, Clinical pharmacology and therapeutics.

[16]  W. Schwarz The Rheology of Saliva , 1987, Journal of dental research.

[17]  G. B. Henegouwen,et al.  Photochemical decomposition of 1,4-benzodiazepines. Diazepam , 1978 .