Exploring the Limits of Synthetic Creation of Solar EUV Images via Image-to-image Translation
暂无分享,去创建一个
Y. Gal | A. G. Baydin | V. Salvatelli | M. Janvier | M. Cheung | S. Bose | Brad Neuberg | Meng Jin | L. D. Santos | L. F. G. dos Santos | Atilim Güneş Baydin
[1] Selection of Three (Extreme)Ultraviolet Channels for Solar Satellite Missions by Deep Learning , 2021, The Astrophysical Journal Letters.
[2] Joel Nothman,et al. SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.
[3] Yong-Jae Moon,et al. Generation of Solar UV and EUV Images from SDO/HMI Magnetograms by Deep Learning , 2019, The Astrophysical Journal.
[4] Meng Jin,et al. A deep learning virtual instrument for monitoring extreme UV solar spectral irradiance , 2019, Science Advances.
[5] Yang Liu,et al. A Machine-learning Data Set Prepared from the NASA Solar Dynamics Observatory Mission , 2019, The Astrophysical Journal Supplement Series.
[6] Randy C. Paffenroth,et al. Anomaly Detection with Robust Deep Autoencoders , 2017, KDD.
[7] A. Asensio Ramos,et al. Enhancing SDO/HMI images using deep learning , 2017, ArXiv.
[8] University of Graz,et al. Real-Time Solar Wind Prediction Based on SDO/AIA Coronal Hole Data , 2015, 1501.06697.
[9] M. Temmer,et al. Relation Between Coronal Hole Areas on the Sun and the Solar Wind Parameters at 1 AU , 2012 .
[10] W. Pesnell,et al. The Solar Dynamics Observatory (SDO) , 2012 .
[11] C. J. Wolfson,et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) , 2011 .
[12] Daniel Rueckert,et al. Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part II , 2017, Lecture Notes in Computer Science.