Efficient tensor tomography in fan-beam coordinates

We propose a thorough analysis of the tensor tomography problem on the Euclidean unit disk parameterized in fan-beam coordinates. This includes, for the inversion of the Radon transform over functions, using another range characterization first appearing in [Pestov-Uhlmann, IMRN 2004] to enforce in a fast way classical moment conditions at all orders. When considering direction-dependent integrands (e.g., tensors), a problem where injectivity no longer holds, we propose a suitable representative (other than the traditionally sought-after solenoidal candidate) to be reconstructed, as well as an efficient procedure to do so. Numerical examples illustrating the method are provided at the end.

[2]  M. Shaposhnikov,et al.  Why should we care about the top quark Yukawa coupling? , 2014, Journal of Experimental and Theoretical Physics.

[3]  C. Guillarmou Lens rigidity for manifolds with hyperbolic trapped set , 2014, 1412.1760.

[4]  François Monard,et al.  Numerical Implementation of Geodesic X-Ray Transforms and Their Inversion , 2013, SIAM J. Imaging Sci..

[5]  Joonas Ilmavirta On Radon transforms on finite groups , 2014, 1411.3829.

[6]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[7]  F. Monard On reconstruction formulas for the ray transform acting on symmetric differentials on surfaces , 2013, 1311.6167.

[8]  Rolf Clackdoyle,et al.  Attenuation correction in PET using consistency information , 1998 .

[9]  R. Clackdoyle Necessary and Sufficient Consistency Conditions for Fanbeam Projections Along a Line , 2013, IEEE Transactions on Nuclear Science.

[10]  G. Uhlmann,et al.  Boundary rigidity with partial data , 2013, 1306.2995.

[11]  S. Helgason The Radon Transform , 1980 .

[12]  V. Sharafutdinov Integral Geometry of Tensor Fields , 1994 .

[13]  V. V. Pickalov,et al.  Reconstruction of vector fields and their singularities from ray transforms , 2011 .

[14]  Alexandru Tamasan,et al.  On the Range Characterization of the Two-Dimensional Attenuated Doppler Transform , 2015, SIAM J. Math. Anal..

[15]  O. Scherzer,et al.  On the $X$-ray transform of planar symmetric 2-tensors , 2015, 1503.04322.

[16]  Gunther Uhlmann,et al.  The inverse problem for the local geodesic ray transform , 2012, 1210.2084.

[17]  E. Derevtsov An approach to direct reconstruction of a solenoidal part in vector and tensor tomography problems , 2005 .

[18]  V. Romanov,et al.  On uniqueness of determination of a form of first degree by its integrals along geodesics , 1997 .

[19]  Katsuyuki Taguchi,et al.  Statistical Projection Completion in X-ray CT Using Consistency Conditions , 2010, IEEE Transactions on Medical Imaging.

[20]  G. Uhlmann,et al.  The Geodesic Ray Transform on Riemannian Surfaces with Conjugate Points , 2014, 1402.5559.

[21]  Gunther Uhlmann,et al.  Tensor tomography on surfaces , 2011, 1109.0505.

[22]  On Radon Transforms on Tori , 2014, 1402.6209.

[23]  G. Herman,et al.  Convolution reconstruction techniques for divergent beams. , 1976, Computers in biology and medicine.

[24]  Alexandru Tamasan,et al.  On the Range of the Attenuated Radon Transform in Strictly Convex Sets , 2013, 1310.2501.

[25]  V. Guillemin,et al.  Some inverse spectral results for negatively curved 2-manifolds , 1980 .

[26]  G. Uhlmann,et al.  On characterization of the range and inversion formulas for the geodesic X-ray transform , 2004 .

[27]  V. Sharafutdinov,et al.  On conformal Killing symmetric tensor fields on Riemannian manifolds , 2011, 1103.3637.

[28]  Guang-Hong Chen,et al.  A new data consistency condition for fan-beam projection data. , 2005, Medical physics.

[29]  S. G. Kazantsev,et al.  Singular value decomposition for the 2D fan-beam Radon transform of tensor fields , 2004 .

[30]  M. Defrise,et al.  Elliptical extrapolation of truncated 2D CT projections using Helgason-Ludwig consistency conditions , 2006, SPIE Medical Imaging.

[31]  G. Uhlmann,et al.  Inverting the local geodesic X-ray transform on tensors , 2014, Journal d'Analyse Mathématique.

[32]  V. Sharafutdinov Variations of Dirichlet-to-Neumann map and deformation boundary rigidity of simple 2-manifolds , 2007 .

[33]  I. E. Svetov,et al.  A numerical solver based on B-splines for 2D vector field tomography in a refracting medium , 2013, Math. Comput. Simul..

[34]  G. Uhlmann,et al.  On the microlocal analysis of the geodesic X-ray transform with conjugate points , 2015, 1502.06545.

[35]  Joonas Ilmavirta On Radon transforms on compact Lie groups , 2014, 1410.2114.

[36]  G. Uhlmann,et al.  The geodesic X-ray transform with fold caustics , 2010, 1004.1007.

[37]  Donald Ludwig,et al.  The radon transform on euclidean space , 2010 .

[38]  Charles L. Epstein,et al.  Introduction to the mathematics of medical imaging , 2003 .

[39]  Hengyong Yu,et al.  Data Consistency Based Rigid Motion Artifact Reduction in Fan-Beam CT , 2007, IEEE Transactions on Medical Imaging.

[40]  S. Petermichl,et al.  A sharp estimate for the weighted Hilbert transform via Bellman functions , 2002 .

[41]  I. E. Svetov,et al.  TOMOGRAPHY OF TENSOR FIELDS IN THE PLAIN , 2015 .

[42]  V. Sharafutdinov Killing tensor fields on the 2-torus , 2014, 1411.4741.

[43]  M. Salo,et al.  The X-Ray Transform for Connections in Negative Curvature , 2015, 1502.04720.

[44]  G. Uhlmann,et al.  Two dimensional compact simple Riemannian manifolds are boundary distance rigid , 2003, math/0305280.

[45]  Rolf Clackdoyle,et al.  Full data consistency conditions for cone-beam projections with sources on a plane , 2013, Physics in medicine and biology.

[46]  C. Guillarmou Invariant distributions and X-ray transform for Anosov flows , 2014, 1408.4732.

[47]  M. Salo,et al.  On the Range of the Attenuated Ray Transform for Unitary Connections , 2013, 1302.4880.