Spin-orbit torques due to extrinsic spin-orbit scattering of topological insulator surface states: out-of-plane magnetization

The origins of the spin-orbit torque (SOT) at ferromagnet/topological insulator interfaces are incompletely understood. The theory has overwhelmingly focussed on the Edelstein effect due to the surface states in the presence of a scalar scattering potential. We investigate here the contribution to the SOT due to extrinsic spin-orbit (SO) scattering of the surface states, focusing on the case of an out-of-plane magnetization. We show that SO scattering brings about a sizable renormalization of the field-like SOT, which exceeds 20 % at larger strengths of the extrinsic SO parameter. The resulting SOT exhibits a maximum as a function of the Fermi energy, magnetization, and extrinsic SO strength. The field-like SOT decreases with increasing disorder strength, while the damping-like SOT is independent of the impurity density. With experimental observation in mind we also determine the role of extrinsic SO scattering on the anomalous Hall effect. Our results suggest extrinsic SO scattering is a significant contributor to the surface SOT stemming from the Edelstein effect when the magnetization is out of the plane.

[1]  D. Culcer,et al.  Electrically-induced spin torques due to the bulk states of topological insulators , 2022, 2206.09939.

[2]  Hao Wu,et al.  Efficient Spin‐Orbit Torque Switching of Perpendicular Magnetization using Topological Insulators with High Thermal Tolerance , 2022, Advanced Electronic Materials.

[3]  D. Culcer,et al.  Semiclassical response of disordered conductors: Extrinsic carrier velocity and spin and field-corrected collision integral , 2022, Physical Review Research.

[4]  H. Jaffrès,et al.  Asymmetric scattering and tunneling of electrons due to spin-orbit and exchange interaction , 2021, Spintronics XIV.

[5]  E. Tsymbal,et al.  Modulation of Spin–Orbit Torque from SrRuO3 by Epitaxial‐Strain‐Induced Octahedral Rotation , 2021, Advanced materials.

[6]  Kang L. Wang,et al.  Roadmap of Spin–Orbit Torques , 2021, IEEE Transactions on Magnetics.

[7]  Kang L. Wang,et al.  Temperature dependence of spin—orbit torque-driven magnetization switching in in situ grown Bi2Te3/MnTe heterostructures , 2021 .

[8]  Christoph Adelmann,et al.  Opportunities and challenges for spintronics in the microelectronics industry , 2020, Nature Electronics.

[9]  A. I. Figueroa,et al.  Control of spin-orbit torques by interface engineering in topological insulator heterostructures. , 2020, Nano letters.

[10]  K. Ando,et al.  Role of interfacial oxidation in the generation of spin-orbit torques , 2020, Physical Review B.

[11]  K. Stokbro,et al.  First-Principles Quantum Transport Modeling of Spin-Transfer and Spin-Orbit Torques in Magnetic Multilayers , 2018, Handbook of Materials Modeling.

[12]  Hyunsoo Yang,et al.  All-electric magnetization switching and Dzyaloshinskii–Moriya interaction in WTe2/ferromagnet heterostructures , 2019, Nature Nanotechnology.

[13]  Robert Sinclair,et al.  Magnetization switching using topological surface states , 2019, Science Advances.

[14]  N. Nagaosa,et al.  Theory of current-driven dynamics of spin textures on the surface of a topological insulator , 2019, Physical Review B.

[15]  Hyunsoo Yang,et al.  Spin orbit torque driven magnetization switching with sputtered Bi2Se3 spin current source , 2019, Journal of Physics D: Applied Physics.

[16]  J. Sinova,et al.  Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems , 2018, Reviews of Modern Physics.

[17]  Hyunsoo Yang,et al.  Spin accumulation in topological insulator thin films—influence of bulk and topological surface states , 2018, Journal of Physics D: Applied Physics.

[18]  Hyunsoo Yang,et al.  Recent advances in spin-orbit torques: Moving towards device applications , 2018, Applied Physics Reviews.

[19]  T. Low,et al.  Room-temperature high spin–orbit torque due to quantum confinement in sputtered BixSe(1–x) films , 2018, Nature Materials.

[20]  K. Hasegawa,et al.  Enhancement of spin-orbit torque by inserting CoOx layer into Co/Pt interface , 2018, Physical Review B.

[21]  Sumit Ghosh,et al.  Spin-orbit torque in a three-dimensional topological insulator–ferromagnet heterostructure: Crossover between bulk and surface transport , 2017, 1711.11016.

[22]  Yi Wang,et al.  Room temperature magnetization switching in topological insulator-ferromagnet heterostructures by spin-orbit torques , 2017, Nature Communications.

[23]  D. Culcer,et al.  Interband coherence response to electric fields in crystals: Berry-phase contributions and disorder effects , 2017 .

[24]  D. Culcer,et al.  Weak Localization and Antilocalization in Topological Materials with Impurity Spin-Orbit Interactions , 2017, Materials.

[25]  D. Culcer,et al.  Quantum Kinetic Theory of the Chiral Anomaly , 2017, 1706.01200.

[26]  Q. Niu,et al.  Semiclassical theory of spin-orbit torques in disordered multiband electron systems , 2017, 1705.07947.

[27]  Luqiao Liu,et al.  Room-Temperature Spin-Orbit Torque Switching Induced by a Topological Insulator. , 2017, Physical review letters.

[28]  O. A. Tretiakov,et al.  Microscopic theory of spin-orbit torques in two dimensions , 2016, 1603.07994.

[29]  A. Manchon,et al.  Dirac spin-orbit torques and charge pumping at the surface of topological insulators , 2015, 1509.06929.

[30]  D. Ralph,et al.  Control of spin–orbit torques through crystal symmetry in WTe2/ferromagnet bilayers , 2016, Nature Physics.

[31]  Xiao-Liang Qi,et al.  The Quantum Anomalous Hall Effect: Theory and Experiment , 2016 .

[32]  A. Fert,et al.  Spin to Charge Conversion at Room Temperature by Spin Pumping into a New Type of Topological Insulator: α-Sn Films. , 2016, Physical review letters.

[33]  H. Ohno,et al.  Magnetization switching by spin-orbit torque in an antiferromagnet-ferromagnet bilayer system. , 2015, Nature materials.

[34]  A. Rushforth,et al.  Electrical switching of an antiferromagnet , 2015, Science.

[35]  Hyunsoo Yang,et al.  Topological Surface States Originated Spin-Orbit Torques in Bi(2)Se(3). , 2015, Physical review letters.

[36]  K. Stokbro,et al.  Nonequilibrium spin texture within a thin layer below the surface of current-carrying topological insulator Bi 2 Se 3 : A first-principles quantum transport study , 2015, 1503.08046.

[37]  T. Frauenheim,et al.  Controllable magnetic correlation between two impurities by spin-orbit coupling in graphene , 2015, Scientific Reports.

[38]  Andrew D Kent,et al.  A new spin on magnetic memories. , 2015, Nature nanotechnology.

[39]  Yoichi Ando,et al.  Spin-electricity conversion induced by spin injection into topological insulators. , 2014, Physical review letters.

[40]  A. Burkov,et al.  Anomalous Hall effect in Weyl metals. , 2014, Physical review letters.

[41]  Kang L. Wang,et al.  Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure. , 2014, Nature materials.

[42]  J. S. Lee,et al.  Spin-transfer torque generated by a topological insulator , 2014, Nature.

[43]  S. Parkin,et al.  Chiral spin torque at magnetic domain walls. , 2013, Nature nanotechnology.

[44]  D. A. Pesin,et al.  Quantum kinetic theory of current-induced torques in Rashba ferromagnets , 2012, 1201.0990.

[45]  C. M. Wang,et al.  Effects of hexagonal warping on surface transport in topological insulators , 2011 .

[46]  R. Cava,et al.  Magnetic proximity effect as a pathway to spintronic applications of topological insulators. , 2011, Nano letters.

[47]  S. Bandiera,et al.  Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection , 2011, Nature.

[48]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[49]  Haijun Zhang,et al.  Model Hamiltonian for topological insulators , 2010, 1005.1682.

[50]  T. Yokoyama,et al.  Theoretical study of the dynamics of magnetization on the topological surface , 2010, 1003.3769.

[51]  M. Franz,et al.  Inverse spin-galvanic effect in the interface between a topological insulator and a ferromagnet. , 2010, Physical review letters.

[52]  Joel E Moore,et al.  The birth of topological insulators , 2010, Nature.

[53]  Bernard Rodmacq,et al.  Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. , 2010, Nature materials.

[54]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[55]  Wei Zhang,et al.  Quantized Anomalous Hall Effect in Magnetic Topological Insulators , 2010, Science.

[56]  R. Winkler,et al.  Current-induced spin torques in III-V ferromagnetic semiconductors , 2008, 0802.3717.

[57]  Jacek K. Furdyna,et al.  Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field , 2008, 0812.3160.

[58]  N. Sinitsyn,et al.  Semiclassical theories of the anomalous Hall effect , 2007, 0712.0183.

[59]  B. Halperin,et al.  Theory of spin hall conductivity in n-doped GaAs. , 2005, Physical review letters.

[60]  F. Haldane Berry curvature on the fermi surface: anomalous Hall effect as a topological fermi-liquid property. , 2004, Physical review letters.

[61]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[62]  M. Stiles,et al.  Anatomy of spin-transfer torque , 2002, cond-mat/0202397.

[63]  T. Jungwirth,et al.  Anomalous Hall effect in ferromagnetic semiconductors. , 2001, Physical review letters.

[64]  V. M. Edelstein Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems , 1990 .

[65]  Michel Dyakonov,et al.  Possibility of Orienting Electron Spins with Current , 1971 .

[66]  L. Berger,et al.  Side-Jump Mechanism for the Hall Effect of Ferromagnets , 1970 .