Augmented nodal matrices and normal trees

Augmented nodal matrices play an important role in the analysis of different features of electrical circuit models. Their study can be addressed in an abstract setting involving two- and three-colour weighted digraphs. By means of a detailed characterization of the structure of proper and normal trees, we provide a unifying framework for the rank analysis of augmented matrices. This covers in particular Maxwell's tree-based determinantal expansions of (non-augmented) nodal matrices, which can be considered as a one-colour version of our results. Via different colour assignments to circuit devices, we tackle the DC-solvability problem and the index characterization of certain differential-algebraic models which arise in the nodal analysis of electrical circuits, extending several known results of passive circuits to the non-passive context.

[1]  E. Keith Lloyd,et al.  Introductory Graph Theory , 1978 .

[2]  Ricardo Riaza,et al.  Differential-Algebraic Systems: Analytical Aspects and Circuit Applications , 2008 .

[3]  Norman Balabanian,et al.  Electrical Network Theory , 1969 .

[4]  P. Bryant A topological investigation of network determinants , 1959 .

[5]  Leon O. Chua,et al.  Linear and nonlinear circuits , 1987 .

[6]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[7]  Gunther Reissig,et al.  Differential-algebraic equations and impasse points , 1996 .

[8]  Michael Günther,et al.  CAD based electric circuit modeling in industry. Pt. 1: Mathematical structure and index of network equations , 1997 .

[9]  Caren Tischendorf,et al.  Topological index‐calculation of DAEs in circuit simulation , 1998 .

[10]  Diana Estévez Schwarz,et al.  Actual Problems of Circuit Simulation in Industry , 2003 .

[11]  Michał Tadeusiewicz A method for identification of asymptotically stable equilibrium points of a certain class of dynamic circuits , 1999 .

[12]  Michael Guenther,et al.  CAD based electric circuit modeling in industry. Part I: Mathematical structure and index of network equations. Part II: Impact of circuit configurations and parameters , 1999 .

[13]  L. Chua,et al.  On the implications of capacitor-only cutsets and inductor-only loops in nonlinear networks , 1979 .

[14]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[15]  Ricardo Riaza,et al.  Qualitative features of matrix pencils and DAEs arising in circuit dynamics , 2007 .

[16]  David P. Brown Derivative-explicit differential equations for RLC graphs☆ , 1963 .

[17]  Michael M. Green,et al.  (Almost) half of any circuit's operating points are unstable , 1994 .

[18]  B. Andrásfai Graph Theory: Flows, Matrices , 1991 .

[19]  R. Balakrishnan,et al.  A textbook of graph theory , 1999 .

[20]  Kishore Singhal,et al.  Computer Methods for Circuit Analysis and Design , 1983 .

[21]  E. Kay,et al.  Introductory Graph Theory , 1978 .

[22]  P. Rentrop,et al.  Differential-Algebraic Equations , 2006 .

[23]  Ricardo Riaza Time-domain properties of reactive dual circuits: Research Articles , 2006 .

[24]  Caren Tischendorf,et al.  Structural analysis of electric circuits and consequences for MNA , 2000, Int. J. Circuit Theory Appl..

[25]  Roswitha März,et al.  Numerical methods for differential algebraic equations , 1992, Acta Numerica.

[26]  Volker Mehrmann,et al.  Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .

[27]  G. Minty Monotone networks , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[28]  T. B. Boffey,et al.  Applied Graph Theory , 1973 .

[29]  B. C. Haggman,et al.  Geometric properties of nonlinear networks containing capacitor-only cutsets and/or inductor-only loops. Part I: Conservation laws , 1986 .

[30]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[31]  P. Bryant,et al.  The order of complexity of electrical networks , 1959 .

[32]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[33]  Geometric properties of nonlinear networks containing capacitor-only cutsets and/or inductor-only loops. Part II: Symmetries , 1986 .

[34]  W. Rheinboldt,et al.  Theoretical and numerical analysis of differential-algebraic equations , 2002 .

[35]  L. Foulds,et al.  Graph Theory Applications , 1991 .

[36]  Caren Tischendorf,et al.  Coupled Systems of Differential Algebraic and Partial Differential Equations in Circuit and Device Simulation , 2003 .

[37]  Ricardo Riaza Time-domain properties of reactive dual circuits , 2006, Int. J. Circuit Theory Appl..

[38]  T. Bashkow,et al.  The A Matrix, New Network Description , 1957 .

[39]  Ricardo Riaza,et al.  Non-linear circuit modelling via nodal methods: Research Articles , 2005 .

[40]  G. Reissig The index of the standard circuit equations of passive RLCTG-networks does not exceed 2 , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[41]  P. Bryant,et al.  The Explicit Form of Bashkow's A Matrix , 1962 .

[42]  Michał Tadeusiewicz,et al.  Global and local stability of circuits containing MOS transistors , 2001 .

[43]  Linda R. Petzold,et al.  Differential-algebraic equations , 2008, Scholarpedia.

[44]  Leon O. Chua,et al.  Graph-theoretic properties of dynamic nonlinear networks , 1976 .

[45]  R. Newcomb The semistate description of nonlinear time-variable circuits , 1981 .

[46]  Michael M. Green,et al.  How to identify unstable DC operating points , 1992 .

[47]  E. Kuh,et al.  The state-variable approach to network analysis , 1965 .

[48]  R. März Differential algebraic systems anew , 2002 .

[49]  Ricardo Riaza,et al.  Tree-based characterization of low index circuit configurations without passivity restrictions , 2008, Int. J. Circuit Theory Appl..

[50]  R. März Differential Algebraic Systems with Properly Stated Leading Term and MNA Equations , 2003 .

[51]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[52]  Leon O. Chua,et al.  The colored branch theorem and its applications in circuit theory , 1980 .