Dopant‐Free Hole Transporting Polymers for High Efficiency, Environmentally Stable Perovskite Solar Cells

Over the past five years, a rapid progress in organometal‐halide perovskite solar cells has greatly influenced emerging solar energy science and technology. In perovksite solar cells, the overlying hole transporting material (HTM) is critical for achieving high power conversion efficiencies (PCEs) and for protecting the air‐sensitive perovskite active layer. This study reports the synthesis and implementation of a new polymeric HTM series based on semiconducting 4,8‐dithien‐2‐yl‐benzo[1,2‐d;4,5‐d′]bistriazole‐alt‐benzo[1,2‐b:4,5‐b′]dithiophenes (pBBTa‐BDTs), yielding high PCEs and environmentally‐stable perovskite cells. These intrinsic (dopant‐free) HTMs achieve a stabilized PCE of 12.3% in simple planar heterojunction cells—the highest value to date for a polymeric intrinsic HTM. This high performance is attributed to efficient hole extraction/collection (the most efficient pBBTa‐BDT is highly ordered and orients π‐face‐down on the perovskite surface) and balanced electron/hole transport. The smooth, conformal polymer coatings suppress aerobic perovskite film degradation, significantly enhancing the solar cell 85 °C/65% RH PCE stability versus typical molecular HTMs.

[1]  G. Vitiello,et al.  Protic ionic liquids as p-dopant for organic hole transporting materials and their application in high efficiency hybrid solar cells. , 2013, Journal of the American Chemical Society.

[2]  Meng Qiu,et al.  Simple planar perovskite solar cells with a dopant-free benzodithiophene conjugated polymer as hole transporting material , 2015 .

[3]  Bumjoon J. Kim,et al.  Poly(benzodithiophene) Homopolymer for High-Performance Polymer Solar Cells with Open-Circuit Voltage of Near 1 V: A Superior Candidate To Substitute for Poly(3-hexylthiophene) as Wide Bandgap Polymer , 2015 .

[4]  Yang Yang,et al.  High-performance multiple-donor bulk heterojunction solar cells , 2015, Nature Photonics.

[5]  Licheng Sun,et al.  Boosting the efficiency and the stability of low cost perovskite solar cells by using CuPc nanorods as hole transport material and carbon as counter electrode , 2016 .

[6]  Michael Grätzel,et al.  Enhanced charge mobility in a molecular hole transporter via addition of redox inactive ionic dopant: Implication to dye-sensitized solar cells , 2006 .

[7]  M. Grätzel,et al.  A dopant free linear acene derivative as a hole transport material for perovskite pigmented solar cells , 2015 .

[8]  Yanhong Luo,et al.  Simple Triphenylamine-Based Hole-Transporting Materials for Perovskite Solar Cells , 2015 .

[9]  James Kirkpatrick,et al.  Systematic improvement in charge carrier mobility of air stable triarylamine copolymers. , 2009, Journal of the American Chemical Society.

[10]  Felix Deschler,et al.  Bright light-emitting diodes based on organometal halide perovskite. , 2014, Nature nanotechnology.

[11]  M. Wienk,et al.  Depositing Fullerenes in Swollen Polymer Layers via Sequential Processing of Organic Solar Cells , 2015 .

[12]  Detlef-M Smilgies,et al.  Scherrer grain-size analysis adapted to grazing-incidence scattering with area detectors. , 2009, Journal of applied crystallography.

[13]  Bert Conings,et al.  Perovskite‐Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach , 2014, Advanced materials.

[14]  Jean M. J. Fréchet,et al.  Molecular-weight-dependent mobilities in regioregular poly(3-hexyl-thiophene) diodes , 2005 .

[15]  Yongfang Li,et al.  Advancements in all-solid-state hybrid solar cells based on organometal halide perovskites , 2015 .

[16]  Yang Yang,et al.  A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells , 2015 .

[17]  Jieshan Qiu,et al.  High performance hybrid solar cells sensitized by organolead halide perovskites , 2013 .

[18]  W. Warta,et al.  Solar cell efficiency tables (Version 45) , 2015 .

[19]  S. Zakeeruddin,et al.  A dopant-free spirobi[cyclopenta[2,1-b:3,4-b′]dithiophene] based hole-transport material for efficient perovskite solar cells , 2015 .

[20]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[21]  C. Brabec,et al.  Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance , 2015 .

[22]  Tomas Leijtens,et al.  Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. , 2014, Nano letters.

[23]  Hyunjin Park,et al.  Corrigendum: Sound Packing DNA: packing open circular DNA with low-intensity ultrasound , 2015, Scientific Reports.

[24]  Xiaoyang Zhu,et al.  Many-body interactions in photo-excited lead iodide perovskite , 2015 .

[25]  T. Lei,et al.  Systematic Investigation of Isoindigo-Based Polymeric Field-Effect Transistors: Design Strategy and Impact of Polymer Symmetry and Backbone Curvature , 2012 .

[26]  Feng Yan,et al.  Efficient Semitransparent Perovskite Solar Cells with Graphene Electrodes , 2015, Advanced materials.

[27]  Hyun Suk Jung,et al.  Perovskite solar cells: from materials to devices. , 2015, Small.

[28]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[29]  G. Sharma,et al.  CH3NH3PbI3 Perovskite Sensitized Solar Cells Using a D-A Copolymer as Hole Transport Material , 2015 .

[30]  Young Chan Kim,et al.  o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells. , 2014, Journal of the American Chemical Society.

[31]  A. Zanelli,et al.  New Low-Gap Polymers from 3,4-Ethylenedioxythiophene-Bis-Substituted Electron-Poor Thiophenes. The Roles of Thiophene, Donor−Acceptor Alternation, and Copolymerization in Intrinsic Conductivity , 2004 .

[32]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[33]  Prashant V. Kamat,et al.  Band filling with free charge carriers in organometal halide perovskites , 2014, Nature Photonics.

[34]  Martin A. Green,et al.  Solar cell efficiency tables (version 46) , 2015 .

[35]  Michael D. McGehee,et al.  Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro(TFSI)₂ in perovskite and dye-sensitized solar cells. , 2014, Journal of the American Chemical Society.

[36]  Young-Bum Kim,et al.  Corrigendum: Clusterin and LRP2 are critical components of the hypothalamic feeding regulatory pathway , 2013 .

[37]  Kai Zhu,et al.  Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells , 2015 .

[38]  Mohammad Khaja Nazeeruddin,et al.  Organohalide lead perovskites for photovoltaic applications , 2014 .

[39]  Namchul Cho,et al.  High‐Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solution‐Processed Copper‐Doped Nickel Oxide Hole‐Transporting Layer , 2015, Advanced materials.

[40]  Reghu Menon,et al.  Polymer electronic materials: a review of charge transport , 2006 .

[41]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[42]  Huajun Chen,et al.  Perovskite Solar Cells Employing Dopant‐Free Organic Hole Transport Materials with Tunable Energy Levels , 2016, Advanced materials.

[43]  Employing PEDOT as the p-Type Charge Collection Layer in Regular Organic-Inorganic Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[44]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[45]  S. Mannsfeld,et al.  Enhanced Vertical Charge Transport in a Semiconducting P3HT Thin Film on Single Layer Graphene , 2015 .

[46]  W. Su,et al.  Tuning perovskite morphology by polymer additive for high efficiency solar cell. , 2015, ACS applied materials & interfaces.

[47]  Jian Tang,et al.  Recent progress in the design of narrow bandgap conjugated polymers for high-efficiency organic solar cells , 2012 .

[48]  Yong‐Young Noh,et al.  Quinoidal Molecules as a New Class of Ambipolar Semiconductor Originating from Amphoteric Redox Behavior , 2015 .

[49]  S. Mhaisalkar,et al.  One-pot synthesis of 4,8-dibromobenzo[1,2-d;4,5-d']bistriazole and synthesis of its derivatives as new units for conjugated materials. , 2012, Organic letters.

[50]  P. Heremans,et al.  Dopant-Free Hole-Transporting Material with a C3h Symmetrical Truxene Core for Highly Efficient Perovskite Solar Cells. , 2016, Journal of the American Chemical Society.

[51]  Mohammad Khaja Nazeeruddin,et al.  Perovskite as light harvester: a game changer in photovoltaics. , 2014, Angewandte Chemie.

[52]  N. Park,et al.  Enhancement of the photovoltaic performance of CH₃NH₃PbI₃ perovskite solar cells through a dichlorobenzene-functionalized hole-transporting material. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[53]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[54]  H. Tao,et al.  Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells , 2015, Nature Communications.

[55]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[56]  K. Wong,et al.  A low temperature gradual annealing scheme for achieving high performance perovskite solar cells with no hysteresis , 2015 .

[57]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[58]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[59]  S. Jenekhe,et al.  Benzobisthiazole-Based Donor–Acceptor Copolymer Semiconductors for Photovoltaic Cells and Highly Stable Field-Effect Transistors , 2011 .

[60]  Peng Gao,et al.  A molecularly engineered hole-transporting material for efficient perovskite solar cells , 2016, Nature Energy.

[61]  J. Roncali Synthetic Principles for Bandgap Control in Linear pi-Conjugated Systems. , 1997, Chemical reviews.

[62]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[63]  Wei Chen,et al.  Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers , 2015, Science.

[64]  J. Teuscher,et al.  Lithium salts as "redox active" p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. , 2013, Physical chemistry chemical physics : PCCP.

[65]  Alex K.-Y. Jen,et al.  Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells , 2015 .

[66]  Robert P. H. Chang,et al.  Polymer solar cells with enhanced fill factors , 2013, Nature Photonics.

[67]  Michael D. McGehee,et al.  Perovskite solar cells: Continuing to soar. , 2014, Nature materials.

[68]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[69]  Juan Bisquert,et al.  Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. , 2013, Nano letters.

[70]  J. Bloking,et al.  Hole transport materials with low glass transition temperatures and high solubility for application in solid-state dye-sensitized solar cells. , 2012, ACS nano.

[71]  T. Marks,et al.  Conjugated polymer energy level shifts in lithium-ion battery electrolytes. , 2014, ACS applied materials & interfaces.