Mems design synthesis based on hybrid evolutionary computation

A hierarchical MEMS synthesis framework based on hybrid evolutionary computation is presented. The synthesis framework integrates a design component library with a MEMS simulation tool (SUGAR) and a hybrid evolutionary computation algorithm that includes two levels of optimization: a stochastic global search method using a multi-objective genetic algorithm (MOGA) and a gradient-based local optimization technique. MOGA is an evolutionary algorithm that can potentially find a global optimal design in a search space with multiple local optima and copes with the simultaneous optimization of a number of objectives. MOGA requires a parametric encoding---genotype---of the evolving phenotype that is efficient yet flexible enough to describe new and creative solutions. To capture the hierarchical nature typical of many MEMS designs, a tree-structured component-based genotype representation for MOGA is developed, which is based on an object-oriented extensible design component library. All elements in the library encapsulate instructions and restrictions for genetic operations and are associated with their connectivity. This genotype representation implicitly encodes much domain-specific engineering knowledge and allows meaningful and flexible genetic operations during the MEMS synthesis process, which helps the evolutionary process to converge to good design solutions more efficiently. A gradient-based local optimization technique is integrated at the end of the evolutionary process to further optimize and fine-tune promising designs with fixed design geometries. An interactive hybrid computation (IHC) algorithm is developed to improve the performance of hybrid evolutionary computation in MEMS design synthesis. The IHC process provides the flexibility for designers to influence the hybrid evolutionary process through human identification of good design patterns and the local fine-tuning of these designs. The advantages of the IHC algorithm are demonstrated using a series of resonator test cases. The MEMS synthesis framework has been successfully applied to surface-micromachined resonators and accelerometers. These test cases demonstrate how engineering domain knowledge can be efficiently integrated into the MEMS synthesis process and provide better designs in a practical computational time. The synthesized designs also show that the framework can create new design concepts in a computational effective manner.

[1]  Kai-Hsiu Liao,et al.  A micromachined platform for localized index modulation in chirped fiber Bragg gratings and its application to ultrafast optical pulse shaping , 2005, 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005..

[2]  R. Plana,et al.  High power handling RF MEMS design and technology , 2005, 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005..

[3]  Ming C. Wu Novel applications of MOEMS display and imaging , 2005, SPIE MOEMS-MEMS.

[4]  A. Ziaei,et al.  Bulk microswitch for power RF applications , 2005, 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005..

[5]  M. Maharbiz,et al.  Electrolytic patterning of dissolved oxygen microgradients during cell culture , 2005, 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005..

[6]  F. Maseeh,et al.  A virtual prototype manufacturing software system for MEMS , 1996, Proceedings of Ninth International Workshop on Micro Electromechanical Systems.

[7]  Elliott R. Brown,et al.  RF-MEMS switches for reconfigurable integrated circuits , 1998 .

[8]  Alice M. Agogino,et al.  A COMPARISON OF MEMS SYNTHESIS TECHNIQUES , 2002 .

[9]  L. R. Carley,et al.  CMOS micromechanical bandpass filter design using a hierarchical MEMS circuit library , 2000, Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308).

[10]  Tamal Mukherjee,et al.  MEMS RESONATOR SYNTHESIS FOR DEFECT REDUCTION , 2001 .

[11]  Alice M. Agogino,et al.  AUTOMATED DESIGN SYNTHESIS FOR MICRO-ELECTRO-MECHANICAL SYSTEMS (MEMS) , 2002, DAC 2002.

[12]  Gary K. Fedder,et al.  Nodal Simulation of Suspended MEMS With Multiple Degrees of Freedom , 1997 .

[13]  Tamal Mukherjee,et al.  Optimization-based synthesis of microresonators , 1998 .

[14]  Tamal Mukherjee,et al.  Automated optimal synthesis of microresonators , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[15]  Makoto Ohsaki,et al.  IEC-based hearing aid fitting , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[16]  Bernhard E. Boser,et al.  An integrated Surface micromachined capacitive lateral accelerometer with 2 uG/rt-Hz resolution , 2002 .

[17]  Nicolaas F. de Rooij,et al.  ASEP : a CAD Program for Silicon Anisotropic Etching , 1991 .

[18]  Erik K. Antonsson,et al.  Robust Mask-Layout Synthesis for MEMS , 2000 .

[19]  David Milford,et al.  CAD tools for semicustom IC design , 1988, Microprocess. Microsystems.

[20]  Praminda Caleb-Solly,et al.  Interactive Evolutionary Strategy Based Discovery of Image Segmentation Parameters , 2004 .

[21]  Gary K. Fedder,et al.  Hierarchical Representation and Simulation of Micromachined Inertial Sensors , 1998 .

[22]  Y. Zhang,et al.  Software tools for designers of sensor and actuator CAE systems , 1991, TRANSDUCERS '91: 1991 International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers.

[23]  Erik K. Antonsson Robust Mask-Layout Synthesis for MEMS 1 , 2001 .

[24]  S. Siegel,et al.  Nonparametric Statistics for the Behavioral Sciences , 2022, The SAGE Encyclopedia of Research Design.

[25]  John A. Biles,et al.  GenJam: A Genetic Algorithm for Generating Jazz Solos , 1994, ICMC.

[26]  Jonathan Cagan,et al.  Formal Engineering Design Synthesis , 2005 .

[27]  Tamal Mukherjee,et al.  Physical Design for Surface-micromachined Mems , 2000 .

[28]  Lin Ma,et al.  Robust mask-layout and process synthesis , 2003 .

[29]  Hui Li,et al.  Genetic Algorithms in MEMS Synthesis , 1998, Micro-Electro-Mechanical Systems (MEMS).

[30]  Cam Nguyen,et al.  Vibrating RF MEMS overview: applications to wireless communications , 2005, SPIE MOEMS-MEMS.

[31]  S. Senturia Microsystem Design , 2000 .

[32]  G.K. Fedder,et al.  Automated optimal synthesis of microaccelerometers , 1999, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).

[33]  Alice M. Agogino,et al.  Global Optimization Using the Multistart Method , 1993 .

[34]  George M. Koppelman,et al.  OYSTER, a three-dimensional structural simulator for microelectromechanical design , 1989 .

[35]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[36]  Ying Zhang,et al.  Reduced human fatigue interactive evolutionary computation for micromachine design , 2005, 2005 International Conference on Machine Learning and Cybernetics.

[37]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[38]  Junfei Li,et al.  Shape inversion of metallic cavities using hybrid genetic algorithm combined with tabu list , 2003 .

[39]  Bernhard E. Boser,et al.  A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics , 1999, IEEE J. Solid State Circuits.

[40]  Jacob K. White,et al.  Implementation of MEMCAD system for electrostatic and mechanical analysis of complex structures from mask descriptions , 1993, [1993] Proceedings IEEE Micro Electro Mechanical Systems.

[41]  G. Fedder,et al.  Structured Design Of Microelectromechanical Systems , 1997, Proceedings of the 34th Design Automation Conference.

[42]  C. Mastrangelo,et al.  The automatic synthesis of planar fabrication process flows for surface micromachined devices , 1994, Proceedings IEEE Micro Electro Mechanical Systems An Investigation of Micro Structures, Sensors, Actuators, Machines and Robotic Systems.

[43]  Li Wang,et al.  A MEMS differential calorimeter for biomolecular characterization , 2005, 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005..

[44]  Hajime Kita,et al.  Multi-objective optimization by genetic algorithms: a review , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[45]  Wolfgang Kuehnel,et al.  Modelling of the mechanical behaviour of a differential capacitor acceleration sensor , 1995 .

[46]  Alice M. Agogino,et al.  Hierarchical MEMS synthesis and optimization , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[47]  Stepan Lucyszyn,et al.  Review of radio frequency microelectromechanical systems technology , 2004 .

[48]  S. Hollar,et al.  Robot Leg Motion in a Planarized-SOI, 2 Poly Process , 2002 .

[49]  Rolf Drechsler,et al.  Evolutionary Algorithms in Computer-Aided Design of Integrated Circuits , 1999 .

[50]  B. Boser,et al.  Surface micromachined accelerometers , 1995, Proceedings of the IEEE 1995 Custom Integrated Circuits Conference.

[51]  Fang Chen,et al.  CMOS-MEMS resonant RF mixer-filters , 2005, 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005..

[52]  Carlos A. Coello Coello,et al.  An updated survey of evolutionary multiobjective optimization techniques: state of the art and future trends , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[53]  Ashraf F. Ashour,et al.  A hybrid genetic algorithm for reinforced concrete flat slab buildings , 2005 .

[54]  David H. Eberly,et al.  3D game engine design - a practical approach to real-time computer graphics , 2000 .

[55]  Erik K. Antonsson,et al.  DESIGN OF MEMS VIA EFFICIENT SIMULATION OF FABRICATION , 1997 .

[56]  Kristofer S. J. Pister,et al.  MEMS SIMULATION USING SUGAR v0.5 , 1998 .

[57]  Esther M. Arkin,et al.  An efficiently computable metric for comparing polygonal shapes , 1991, SODA '90.

[58]  Alice M. Agogino,et al.  Improving evolutionary synthesis of MEMS through fabrication and testing feedback , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[59]  Fred R. Beyette,et al.  Design automation of MEMS systems using behavioral modeling , 1999, Proceedings Ninth Great Lakes Symposium on VLSI.

[60]  Jacob K. White,et al.  A computer-aided design system for microelectromechanical systems (MEMCAD) , 1992 .

[61]  Ying Zhang,et al.  Reducing Human Fatigue in Interactive Evolutionary Computation Through Fuzzy Systems and Machine Learning Systems , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[62]  Nadim Maluf,et al.  An Introduction to Microelectromechanical Systems Engineering , 2000 .

[63]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[64]  Jianjun Hu,et al.  System-Level Synthesis of MEMS via Genetic Programming and Bond Graphs , 2003, GECCO.

[65]  S. Crary,et al.  CAEMEMS: an integrated computer-aided engineering workbench for micro-electro-mechanical systems , 1990, IEEE Proceedings on Micro Electro Mechanical Systems, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots..

[66]  William C. Tang,et al.  Viscous air damping in laterally driven microresonators , 1994, Proceedings IEEE Micro Electro Mechanical Systems An Investigation of Micro Structures, Sensors, Actuators, Machines and Robotic Systems.

[67]  Jan G. Korvink,et al.  SOLIDIS: a tool for microactuator simulation in 3-D , 1997 .

[68]  G. Nemhauser,et al.  Integer Programming , 2020 .

[69]  E. Antonsson,et al.  Mask-Layout Synthesis Through an Evolutionary Algorithm , 1999 .

[70]  Alice M. Agogino,et al.  The Role of Constraints and Human Interaction in Evolving MEMS Designs: Microresonator Case Study , 2004, DAC 2004.

[71]  Ying Zhang,et al.  Microfabrication and characterization of evolutionary MEMS resonators , 2005, IEEE International Symposium on Micro-NanoMechatronics and Human Science, 2005.

[72]  Byung Ro Moon,et al.  Hybrid Genetic Algorithms for Feature Selection , 2004, IEEE Trans. Pattern Anal. Mach. Intell..

[73]  David J. Nagel,et al.  Optics and MEMS , 1999 .

[74]  Hui Li,et al.  EVOLUTIONARY TECHNIQUES IN MEMS SYNTHESIS , 1998 .