Assessing uncertainties in balanced cross sections

Abstract Balanced structural cross sections are models that are fit to incomplete data. The models are under-constrained with respect to any particular two-dimensional line-length model, but enough data generally exists to yield a well-constrained area balance solution. Furthermore, the area balance encompasses all possible line-length solutions. Therefore, where the primary objective of section balancing is the determination of horizontal shortening magnitude, area balancing provides an analytical solution. We use this analytical solution to develop a comprehensive, robust analysis of the uncertainty in shortening estimates resulting from cross-section balancing. The analytical solution allows us to propagate errors formally on the input parameters — stratigraphic thicknesses, depth to decollement, eroded hanging wall cutoffs — through the equations and produce the resulting uncertainty on the magnitude of shortening. Balanced cross sections from the Subandean belt of the Central Andes are used to demonstrate the relative importance of stratigraphy and eroded hanging wall cutoffs in the contribution to the overall error.

[1]  John J. Walsh,et al.  Displacement gradients on fault surfaces , 1989 .

[2]  D. Elliott The motion of thrust sheets , 1976 .

[3]  C. D. A. Dahlstrom Balanced cross sections , 1969 .

[4]  R. Groshong Area balance, depth to detachment, and strain in extension , 1994 .

[5]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[6]  G. Williams,et al.  Displacement efficiency of faults and fractures , 1987 .

[7]  Stuart Hardy,et al.  A velocity description of constant-thickness fault-propagation folding , 1997 .

[8]  B. Sheffels Lower bound on the amount of crustal shortening, in the central Bolivian Andes , 1990 .

[9]  J. Hossack The use of balanced cross-sections in the calculation of orogenic contraction: A review , 1979, Journal of the Geological Society.

[10]  Rollin T. Chamberlin,et al.  The Appalachian Folds of Central Pennsylvania , 1910, The Journal of Geology.

[11]  N. McQuarrie The kinematic history of the central Andean fold-thrust belt, Bolivia: Implications for building a high plateau , 2002 .

[12]  R. Allmendinger,et al.  Amount of extension on small faults: An example from the Viking graben , 1992 .

[13]  J. J. Walsh,et al.  Distributions of cumulative displacement and seismic slip on a single normal fault surface , 1987 .

[14]  K. Dunn,et al.  Structural Styles and Hydrocarbon Potential of the Sub-Andean Thrust Belt of Southern Bolivia , 1995 .

[15]  P. Geiser The role of kinematics in the construction and analysis of geological cross sections in deformed terranes , 1988 .

[16]  S. Mitra,et al.  Equal-area balancing , 1989 .

[17]  R. Allmendinger,et al.  Subandean thrust and fold belt of northwestern Argentina: Geometry and timing of the Andean evolution , 2003 .

[18]  D. Elliott,et al.  The construction of balanced cross-sections , 1983 .

[19]  A. Tankard,et al.  Petroleum Basins of South America , 2003 .

[20]  T. Sempéré Phanerozoic Evolution of Bolivia and Adjacent Regions , 1995 .

[21]  J. Epard,et al.  The role of strain in area-constant detachment folding , 1994 .

[22]  Randall Marrett,et al.  Estimates of strain due to brittle faulting : sampling of fault populations , 1991 .

[23]  Mark D. Semon,et al.  POSTUSE REVIEW: An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements , 1982 .

[24]  R. Allmendinger,et al.  Kinematic analysis of fault-slip data , 1990 .

[25]  John Harris,et al.  Handbook of mathematics and computational science , 1998 .

[26]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .

[27]  B. Meade,et al.  Temporal variation in climate and tectonic coupling in the central Andes , 2008 .

[28]  J. Suppe,et al.  Balanced Geological Cross-Sections: An Essential Technique in Geological Research and Exploration , 1991 .

[29]  A. Ross,et al.  Fold style inversion: Placing probabilistic constraints on the predicted shape of blind thrust faults , 2000 .

[30]  A. Bally,et al.  Structure, seismic data and orogenic evolution of southern Canadian Rocky Mountains , 1970 .

[31]  Alan T. Zehnder,et al.  Velocity field for the trishear model , 2000 .

[32]  Stuart Hardy,et al.  A method for quantifying the kinematics of fault-bend folding , 1995 .

[33]  J. Kley,et al.  Tectonic shortening and crustal thickness in the Central Andes: How good is the correlation? , 1998 .

[34]  R. Allmendinger,et al.  Finite strain and rotation from fault-slip data , 1993 .