Modeling and identification of piezoelectric hysteresis by an asymmetric Bouc-Wen model

The motion performance of piezoelectric actuator is restricted by its hysteresis nonlinearity in the application of precision positioning. A novel hysteresis modeling method based on Bouc-Wen model is proposed to describe the asymmetric hysteresis nonlinearity of piezoelectric actuator. Considering the fact that the classical Bouc-Wen model is only a symmetric model, the proposed model is developed for describing the asymmetric hysteresis characteristic of piezoelectric actuator. Different from the commonly used approach for developing asymmetric Bouc-Wen model by introducing parameters to modify the nonlinear component, the proposed model only modified the linear component by introducing a general input function. By this way, the proposed model not only has a relatively simple mathematical form, but also has fewer parameters to characterize the asymmetric hysteresis characteristic. Particle swarm optimization is used to identify the parameters of the proposed model, and different experiments are conducted on a piezoelectric actuator to validate the developed model. Experimental results demonstrate that the asymmetric hysteresis characteristic of hard piezoelectric material can be effectively described by the proposed model.

[1]  Zhu Wei,et al.  Online parameter identification of the asymmetrical Bouc–Wen model for piezoelectric actuators , 2014 .

[2]  Xin Chen,et al.  A Modified PSO Structure Resulting in High Exploration Ability With Convergence Guaranteed , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[3]  Hendrik Van Brussel,et al.  Asymmetric-hysteresis compensation in piezoelectric actuators , 2012 .

[4]  Changhui Rao,et al.  Adaptive control of piezoelectric fast steering mirror for high precision tracking application , 2015 .

[5]  Armen Der Kiureghian,et al.  Generalized Bouc-Wen model for highly asymmetric hysteresis , 2006 .

[6]  T. Low,et al.  Modeling of a three-layer piezoelectric bimorph beam with hysteresis , 1995 .

[7]  Yangmin Li,et al.  Dynamic compensation and H ∞ control for piezoelectric actuators based on the inverse Bouc-Wen model , 2014 .

[8]  Changhui Rao,et al.  Precision control of piezo-actuated optical deflector with nonlinearity correction based on hysteresis model , 2014 .

[9]  Ying-Shieh Kung,et al.  A comparison of fitness functions for the identification of a piezoelectric hysteretic actuator based on the real-coded genetic algorithm , 2006 .

[10]  Li-Min Zhu,et al.  Modeling and Compensation of Asymmetric Hysteresis Nonlinearity for Piezoceramic Actuators With a Modified Prandtl–Ishlinskii Model , 2014, IEEE Transactions on Industrial Electronics.

[11]  Kuo-Ming Chang,et al.  Model reference adaptive control for a piezo-positioning system , 2010 .

[12]  Lining Sun,et al.  Improving positioning accuracy of piezoelectric actuators by feedforward hysteresis compensation based on a new mathematical model , 2005 .

[13]  Xifan Wu,et al.  Importance of second-order piezoelectric effects in zinc-blende semiconductors. , 2006, Physical review letters.

[14]  S. O. Reza Moheimani,et al.  Control orientated synthesis of high-performance piezoelectric shunt impedances for structural vibration control , 2005, IEEE Transactions on Control Systems Technology.

[15]  José Rodellar,et al.  Dynamic properties of the hysteretic Bouc-Wen model , 2007, Syst. Control. Lett..

[16]  Aibing Zhang,et al.  The influence of Maxwell stresses on the fracture mechanics of piezoelectric materials , 2014 .

[17]  Saeid Bashash,et al.  A Polynomial-Based Linear Mapping Strategy for Feedforward Compensation of Hysteresis in Piezoelectric Actuators , 2008 .

[18]  Wei Zhu,et al.  Non-symmetrical Bouc–Wen model for piezoelectric ceramic actuators , 2012 .

[19]  R. Bouc Forced Vibration of Mechanical Systems with Hysteresis , 1967 .

[20]  Yoshihiro Ishibashi,et al.  Simulations of Ferroelectric Characteristics Using a One-Dimensional Lattice Model , 1991 .

[21]  M. Krasnosel’skiǐ,et al.  Systems with Hysteresis , 1989 .

[22]  B Samali,et al.  Bouc-Wen model parameter identification for a MR fluid damper using computationally efficient GA. , 2007, ISA transactions.

[23]  Vi-Kwei Wen,et al.  Method for random vibration hysteretics system , 1976 .

[24]  Musa Jouaneh,et al.  Generalized preisach model for hysteresis nonlinearity of piezoceramic actuators , 1997 .

[25]  Ion Stiharu,et al.  Modeling and application of MR dampers in semi-adaptive structures , 2008 .

[26]  Wei Chen,et al.  A Model for Simulating Polarization Switching and AF-F Phase Changes in Ferroelectric Ceramics , 1998 .

[27]  Ragnar Sigbjörnsson,et al.  Stochastic models for simulation of strong ground motion in Iceland , 2001 .

[28]  Y. Wen Method for Random Vibration of Hysteretic Systems , 1976 .

[29]  Micky Rakotondrabe,et al.  Bouc–Wen Modeling and Inverse Multiplicative Structure to Compensate Hysteresis Nonlinearity in Piezoelectric Actuators , 2011, IEEE Transactions on Automation Science and Engineering.

[30]  Y. K. Wen,et al.  Evaluation of 3D Steel Moment Frames under Earthquake Excitations. I: Modeling , 2007 .

[31]  Jian Wang,et al.  A review of long range piezoelectric motors using frequency leveraged method , 2015 .

[32]  Bijan Samali,et al.  A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization , 2006 .

[33]  Zhen Zhang,et al.  Precision tracking control of piezoelectric actuator based on bouc-wen hysteresis compensator , 2012 .

[34]  Musa Jouaneh,et al.  Modeling hysteresis in piezoceramic actuators , 1995 .

[35]  Micky Rakotondrabe,et al.  Modeling, identification and feedforward control of multivariable hysteresis by combining Bouc-Wen equations and the inverse multiplicative structure , 2014, 2014 American Control Conference.

[36]  Denis Laxalde,et al.  Dynamics of a linear oscillator connected to a small strongly non-linear hysteretic absorber , 2006, 0801.4351.

[37]  Qingsong Xu,et al.  Identification and Compensation of Piezoelectric Hysteresis Without Modeling Hysteresis Inverse , 2013, IEEE Transactions on Industrial Electronics.