Vector Ambiguity and Freeness Problems in SL (2, ℤ)

We study the vector ambiguity problem and the vector freeness problem in SL\((2,\mathbb {Z})\). Given a finitely generated \(n \times n\) matrix semigroup S and an n-dimensional vector \(\mathbf {x}\), the vector ambiguity problem is to decide whether for every target vector \(\mathbf {y} = M\mathbf {x}\), where \(M \in S\), M is unique. We also consider the vector freeness problem which is to show that every matrix M which is transforming \(\mathbf {x}\) to \(M \mathbf {x}\) has a unique factorization with respect to the generator of S. We show that both problems are NP-complete in SL\((2,\mathbb {Z})\), which is the set of \(2 \times 2\) integer matrices with determinant 1. Moreover, we generalize the vector ambiguity problem and extend to the finite and k-vector ambiguity problems where we consider the degree of vector ambiguity of matrix semigroups.

[1]  Igor Potapov,et al.  Matrix Semigroup Freeness Problems in SL (2, \mathbb Z) , 2017, SOFSEM.

[2]  Jeffrey Shallit,et al.  A Second Course in Formal Languages and Automata Theory , 2008 .

[3]  Fernando Chamizo Non-Euclidean visibility problems , 2006 .

[4]  Igor Potapov,et al.  On the Computational Complexity of Matrix Semigroup Problems , 2012, Fundam. Informaticae.

[5]  Jean-Camille Birget,et al.  On the Undecidability of the Freeness of Integer Matrix Semigroups , 1991, Int. J. Algebra Comput..

[6]  A New Twist in Knot Theory , 2009 .

[7]  Thomas Noll Musical intervals and special linear transformations , 2007 .

[8]  Imre Simon,et al.  On Finite Semigroups of Matrices , 1977, Theor. Comput. Sci..

[9]  Igor Potapov,et al.  Mortality for 2×2 Matrices Is NP-Hard , 2012, MFCS.

[10]  Igor Potapov,et al.  Reachability Problems in Quaternion Matrix and Rotation Semigroups , 2007, MFCS.

[11]  Shang Chen,et al.  Scalar Ambiguity and Freeness in Matrix Semigroups over Bounded Languages , 2016, LATA.

[12]  Leonid Polterovich,et al.  Stable mixing for cat maps and quasi-morphisms of the modular group , 2004, Ergodic Theory and Dynamical Systems.

[13]  Don Zagier,et al.  Elliptic modular forms and their applications. , 2008 .

[14]  Igor Potapov,et al.  Matrix Semigroup Freeness Problems in SL (2, \mathbb Z) , 2016, SOFSEM.

[15]  Igor Potapov Composition Problems for Braids , 2013, FSTTCS.

[16]  A. Restuccia,et al.  SL(2, Z) symmetries, supermembranes and symplectic torus bundles , 2011, 1105.3181.

[17]  Igor Potapov,et al.  Decidability of the Membership Problem for 2 × 2 integer matrices , 2016, SODA.

[18]  Vincent D. Blondel,et al.  Problem 10.3 Freeness of multiplicative matrix semigroups , 2009 .

[19]  Gerhard J. Woeginger,et al.  On the Equal-Subset-Sum Problem , 1992, Inf. Process. Lett..

[20]  Paul E. Schupp,et al.  Membership Problem for the Modular Group , 2007, SIAM J. Comput..

[21]  Fritz Grunewald,et al.  Arithmetic Applications of the Hyperbolic Lattice Point Theorem , 1988 .

[22]  Jean-Camille Birget,et al.  Two-letter group codes that preserve aperiodicity of inverse finite automata , 2007 .

[23]  Juha Honkala,et al.  The freeness problem over matrix semigroups and bounded languages , 2014, Inf. Comput..

[24]  R. Lyndon,et al.  Combinatorial Group Theory , 1977 .

[25]  Edward Witten SL(2;Z) Action On Three-Dimensional Conformal Field Theories With Abelian Symmetry , 2003 .

[26]  Juhani Karhumäki,et al.  On the Undecidability of Freeness of Matrix Semigroups , 1999, Int. J. Algebra Comput..

[27]  Igor Potapov,et al.  The Identity Problem for Matrix Semigroups in SL2(ℤ) is NP-complete , 2017, SODA.

[28]  Dexter Kozen,et al.  Lower bounds for natural proof systems , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[29]  Christian Choffrut,et al.  Some decision problems on integer matrices , 2005, RAIRO Theor. Informatics Appl..

[30]  Igor Potapov,et al.  Periodic and Infinite Traces in Matrix Semigroups , 2008, SOFSEM.

[31]  Igor Potapov,et al.  Vector Reachability Problem in SL(2, Z) , 2016, MFCS.

[32]  Igor Potapov,et al.  Decidability of the Membership Problem for $2\times 2$ integer matrices , 2016 .