Outliers in the spectrum of large deformed unitarily invariant models

In this paper we characterize the possible outliers in the spectrum of large deformed unitarily invariant additive and multiplicative models, as well as the eigenvectors corresponding to them. We allow both the non-deformed unitarily invariant model and the perturbation matrix to have non-trivial limiting spectral measures and spiked outliers in their spectrum. We uncover a remarkable new phenomenon: a single spike can generate asymptotically several outliers in the spectrum of the deformed model. The free subordination functions play a key role in this analysis.

[1]  A. Guionnet,et al.  An Introduction to Random Matrices , 2009 .

[2]  L. Arnold On the asymptotic distribution of the eigenvalues of random matrices , 1967 .

[3]  P. Biane On the free convolution with a semi-circular distribution , 1997 .

[4]  D. Voiculescu Limit laws for Random matrices and free products , 1991 .

[5]  V. Uppuluri,et al.  Asymptotic distribution of eigenvalues of random matrices , 1972 .

[6]  S. Péché The largest eigenvalue of small rank perturbations of Hermitian random matrices , 2006 .

[7]  J. W. Silverstein,et al.  Eigenvalues of large sample covariance matrices of spiked population models , 2004, math/0408165.

[8]  M. Capitaine Exact separation phenomenon for the eigenvalues of large Information-Plus-Noise type matrices. Application to spiked models , 2013, 1301.3940.

[9]  A. Horn Eigenvalues of sums of Hermitian matrices , 1962 .

[10]  C. Donati-Martin,et al.  Strong asymptotic freeness for Wigner and Wishart matrices preprint , 2005, math/0504414.

[11]  Philippe Biane,et al.  Processes with free increments , 1998 .

[12]  D. Voiculescu The coalgebra of the free difference quotient and free probability , 2000 .

[13]  P. Loubaton,et al.  Almost sure localization of the eigenvalues in a Gaussian information plus noise model - Application to the spiked models , 2010, 1009.5807.

[14]  C. Donati-Martin,et al.  Free Convolution with a Semicircular Distribution and Eigenvalues of Spiked Deformations of Wigner Matrices , 2010, 1006.3684.

[15]  C. Donati-Martin,et al.  The largest eigenvalues of finite rank deformation of large Wigner matrices: Convergence and nonuniversality of the fluctuations. , 2007, 0706.0136.

[16]  D. Voiculescu The analogues of entropy and of Fisher's information measure in free probability theory, I , 1993 .

[17]  J. Garnett,et al.  Bounded Analytic Functions , 2006 .

[18]  Alexandru Nica,et al.  Free random variables : a noncommutative probability approach to free products with applications to random matrices, operator algebras, and harmonic analysis on free groups , 1992 .

[19]  M. Capitaine Additive/Multiplicative Free Subordination Property and Limiting Eigenvectors of Spiked Additive Deformations of Wigner Matrices and Spiked Sample Covariance Matrices , 2011, 1103.2899.

[20]  Uffe Haagerup,et al.  A new application of random matrices: Ext(C^*_{red}(F_2)) is not a group , 2002 .

[21]  A. Soshnikov,et al.  On finite rank deformations of Wigner matrices , 2011, 1103.3731.

[22]  R. Bhatia Matrix Analysis , 1996 .

[23]  Z. Bai,et al.  On the limit of the largest eigenvalue of the large dimensional sample covariance matrix , 1988 .

[24]  William Fulton,et al.  Eigenvalues of sums of Hermitian matrices [After A. Klyachko] , 1998 .

[25]  F. Gesztesy,et al.  On Matrix–Valued Herglotz Functions , 1997, funct-an/9712004.

[26]  The Lebesgue decomposition of the free additive convolution of two probability distributions , 2006, math/0603104.

[27]  Jianfeng Yao,et al.  On sample eigenvalues in a generalized spiked population model , 2008, J. Multivar. Anal..

[28]  S. Belinschi,et al.  A new approach to subordination results in free probability , 2007 .

[29]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[30]  János Komlós,et al.  The eigenvalues of random symmetric matrices , 1981, Comb..

[31]  D. Féral,et al.  The Largest Eigenvalue of Rank One Deformation of Large Wigner Matrices , 2006, math/0605624.

[32]  V. Kargin On Eigenvalues of the Sum of Two Random Projections , 2012, 1205.0993.

[33]  B. Collins,et al.  The strong asymptotic freeness of Haar and deterministic matrices , 2011, 1105.4345.

[34]  A note on regularity for free convolutions , 2006 .

[35]  Z. D. Bai,et al.  Necessary and Sufficient Conditions for Almost Sure Convergence of the Largest Eigenvalue of a Wigner Matrix , 1988 .

[36]  S. Belinschi,et al.  Infinite divisibility and a non-commutative Boolean-to-free Bercovici-Pata bijection , 2010, 1007.0058.

[37]  S. Péché,et al.  Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices , 2004, math/0403022.

[38]  Alexandru Nica,et al.  Free random variables , 1992 .

[39]  D. Voiculescu Addition of certain non-commuting random variables , 1986 .

[40]  J. Globevnik,et al.  A note on normal-operator-valued analytic functions , 1973 .

[41]  Raj Rao Nadakuditi,et al.  Fundamental Limit of Sample Generalized Eigenvalue Based Detection of Signals in Noise Using Relatively Few Signal-Bearing and Noise-Only Samples , 2009, IEEE Journal of Selected Topics in Signal Processing.

[42]  Raj Rao Nadakuditi,et al.  The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices , 2009, 0910.2120.

[43]  R. Speicher Free Convolution and the Random Sum of Matrices , 1993 .