Squeeze Methods for Generating Gamma Variates

Abstract Two algorithms are given for generating gamma distributed random variables. The algorithms, which are valid when the shape parameter is greater than one, use a uniform majorizing function for the body of the distribution and exponential majorizing functions for the tails. The algorithms are self-contained, requiring only U (0, 1) variates. Comparisons are made to four competitive algorithms in terms of marginal execution times, initialization time, and memory requirements. Marginal execution times are less than those of existing methods for all values of the shape parameter, as implemented here in FORTRAN.

[1]  Chris S. Wallace Transformed Rejection Generators for Gamma and Normal Pseudo-Random Variables , 1976, Aust. Comput. J..

[2]  B. Schmeiser,et al.  Acceptance/Rejection Methods for Beta Variate Generation , 1980 .

[3]  G. Marsaglia The squeeze method for generating gamma variates , 1977 .

[4]  M. Jöhnk Erzeugung von betaverteilten und gammaverteilten Zufallszahlen , 1964 .

[5]  Pandu R. Tadikamalla,et al.  Computer generation of gamma random variables , 1978, CACM.

[6]  A. Atkinson,et al.  The Computer Generation of Beta, Gamma and Normal Random Variables , 1976 .

[7]  Bruce W. Schmeiser Generation of Variates from Distribution Tails. , 1978 .

[8]  John F. Monahan,et al.  Recent Developments in the Computer Generation of Student's t and Gamma Random Variables , 1978 .

[9]  N. D. Wallace,et al.  Computer generation of gamma random variates with non-integral shape parameters , 1974, Commun. ACM.

[10]  George S. Fishman,et al.  Sampling from the gamma distribution on a computer , 1976, CACM.

[11]  R. Cheng,et al.  The Generation of Gamma Variables with Non‐Integral Shape Parameter , 1977 .

[12]  J. Whittaker Generating Gamma and Beta Random Variables with Non-Integral Shape Parameters , 1974 .

[13]  A. J. Kinderman,et al.  Computer Generation of Normal Random Variables , 1976 .

[14]  E. J. McGrath,et al.  Techniques for efficient Monte Carlo simulation. Volume II. Random number generation for selected probability distributions , 1973 .

[15]  A. C. Atkinson An Easily Programmed Algorithm for Generating Gamma Random Variables , 1977 .

[16]  Bruce W. Schmeiser Technical Note - Generation of Variates from Distribution Tails , 1980, Oper. Res..

[17]  George S. Fishman,et al.  Solution of Large Networks by Matrix Methods , 1976, IEEE Transactions on Systems, Man, and Cybernetics.