Polynomial-time data reduction for weighted problems beyond additive goal functions

Kernelization is the fundamental notion for polynomial-time data reduction with performance guarantees. Kernelization for weighted problems particularly requires to also shrink weights. Marx and V\'egh [ACM Trans. Algorithms 2015] and Etscheid et al. [J. Comput. Syst. Sci. 2017] used a technique of Frank and Tardos [Combinatorica 1987] to obtain polynomial-size kernels for weighted problems, mostly with additive goal functions. We lift the technique to linearizable functions, a function type that we introduce and that also contains non-additive functions. Using the lifted technique, we obtain kernelization results for natural problems in graph partitioning, network design, facility location, scheduling, vehicle routing, and computational social choice, thereby improving and generalizing results from the literature.

[1]  Ernst Althaus,et al.  Power Efficient Range Assignment for Symmetric Connectivity in Static Ad Hoc Wireless Networks , 2006, Wirel. Networks.

[2]  Michael R. Fellows,et al.  On the parametric complexity of schedules to minimize tardy tasks , 2003, Theor. Comput. Sci..

[3]  Stefan Kratsch,et al.  Polynomial kernels for weighted problems , 2015, J. Comput. Syst. Sci..

[4]  Andrea E. F. Clementi,et al.  On the Power Assignment Problem in Radio Networks , 2004, Mob. Networks Appl..

[5]  Michael R. Fellows,et al.  Graph Layout Problems Parameterized by Vertex Cover , 2008, ISAAC.

[6]  E. Lawler A “Pseudopolynomial” Algorithm for Sequencing Jobs to Minimize Total Tardiness , 1977 .

[7]  Evripidis Bampis,et al.  Parameterized Power Vertex Cover , 2016, WG.

[8]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[9]  René van Bevern,et al.  Constant-factor approximations for Capacitated Arc Routing without triangle inequality , 2014, Oper. Res. Lett..

[10]  Christian Komusiewicz,et al.  A parameterized approximation algorithm for the mixed and windy capacitated arc routing problem: Theory and experiments , 2017, Networks.

[11]  René van Bevern,et al.  Fixed-Parameter Algorithms for Maximum-Profit Facility Location Under Matroid Constraints , 2018, CIAC.

[12]  John R. Chamberlin,et al.  Representative Deliberations and Representative Decisions: Proportional Representation and the Borda Rule , 1983, American Political Science Review.

[13]  Till Fluschnik,et al.  Fair Knapsack , 2017, AAAI.

[14]  András Frank,et al.  An application of simultaneous diophantine approximation in combinatorial optimization , 1987, Comb..

[15]  René van Bevern,et al.  Parameterized algorithms and data reduction for the short secluded s‐t‐path problem , 2018, Networks.

[16]  Michael J. Todd,et al.  Polynomial Algorithms for Linear Programming , 1988 .

[17]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[18]  J. M. Moore,et al.  A Functional Equation and its Application to Resource Allocation and Sequencing Problems , 1969 .

[19]  Rolf Niedermeier,et al.  Interval scheduling and colorful independent sets , 2012, Journal of Scheduling.

[20]  Michael R. Fellows,et al.  W[2]-hardness of precedence constrained K-processor scheduling , 1995, Oper. Res. Lett..

[21]  René van Bevern,et al.  Parameterized complexity of machine scheduling: 15 open problems , 2017, Comput. Oper. Res..

[22]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[23]  Friedrich Eisenbrand,et al.  An Algorithmic Theory of Integer Programming , 2019, ArXiv.

[24]  Robert Krauthgamer,et al.  Min-max Graph Partitioning and Small Set Expansion , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[25]  Prasad Raghavendra,et al.  Graph expansion and the unique games conjecture , 2010, STOC '10.

[26]  René van Bevern,et al.  The Complexity of Arc Routing Problems , 2013 .

[27]  Esther M. Arkin,et al.  Approximations for minimum and min-max vehicle routing problems , 2006, J. Algorithms.

[28]  Dvir Shabtay,et al.  New algorithms for minimizing the weighted number of tardy jobs on a single machine , 2017, Annals of Operations Research.

[29]  Neeldhara Misra,et al.  On the Complexity of Chamberlin-Courant on Almost Structured Profiles , 2017, ADT.

[30]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[31]  Gerhard J. Woeginger,et al.  Precedence-constrained scheduling problems parameterized by partial order width , 2016, DOOR.

[32]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[33]  René van Bevern,et al.  On $(1+\varepsilon)$-approximate problem kernels for the Rural Postman Problem , 2018, 1812.10131.

[34]  László A. Végh,et al.  Fixed-Parameter Algorithms for Minimum Cost Edge-Connectivity Augmentation , 2013, ICALP.

[35]  Rolf Niedermeier,et al.  Parameterized Algorithms for Power-Efficient Connected Symmetric Wireless Sensor Networks , 2017, ALGOSENSORS.

[36]  Henning Fernau,et al.  Facility location problems: A parameterized view , 2011, Discret. Appl. Math..