Public-key encryption and authentication of quantum information

Public-key cryptosystems for quantum messages are considered from two aspects: public-key encryption and public-key authentication. Firstly, we propose a general construction of quantum public-key encryption scheme, and then construct an information-theoretic secure instance. Then, we propose a quantum public-key authentication scheme, which can protect the integrity of quantum messages. This scheme can both encrypt and authenticate quantum messages. It is information-theoretic secure with regard to encryption, and the success probability of tampering decreases exponentially with the security parameter with regard to authentication. Compared with classical public-key cryptosystems, one private-key in our schemes corresponds to an exponential number of public-keys, and every quantum public-key used by the sender is an unknown quantum state to the sender.

[1]  A. Winter,et al.  Randomizing Quantum States: Constructions and Applications , 2003, quant-ph/0307104.

[2]  V. Roychowdhury,et al.  Optimal encryption of quantum bits , 2000, quant-ph/0003059.

[3]  Andris Ambainis,et al.  Small Pseudo-random Families of Matrices: Derandomizing Approximate Quantum Encryption , 2004, APPROX-RANDOM.

[4]  Masahito Hayashi,et al.  Quantum measurements for hidden subgroup problems with optimal sample complexity , 2006, Quantum Inf. Comput..

[5]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[6]  Li Yang,et al.  Qubit-string-based bit commitment protocols with physical security , 2010, 1011.5099.

[7]  Fuguo Deng,et al.  Reply to ``Comment on `Secure direct communication with a quantum one-time-pad' '' , 2004, quant-ph/0405177.

[8]  Min Liang,et al.  Quantum public-key cryptosystems based on induced trapdoor one-way transformations , 2010, 1012.5249.

[9]  Li Yang,et al.  Quantum message authentication based on classical NP-complete problem , 2003 .

[10]  Kun Zhong,et al.  Deterministic secure quantum communication over a collective-noise channel , 2009 .

[11]  XingLan Zhang One-way quantum identity authentication based on public key , 2009 .

[12]  Qiaoyan Wen,et al.  Quantum secure direct communication over the collective amplitude damping channel , 2009 .

[13]  Akinori Kawachi,et al.  On the Power of Quantum Encryption Keys , 2008, PQCrypto.

[14]  Guihua Zeng,et al.  Novel qubit block encryption algorithm with hybrid keys , 2007 .

[15]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[16]  Shou Zhang,et al.  Secure direct communication based on secret transmitting order of particles , 2006, quant-ph/0601119.

[17]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[18]  Adam D. Smith,et al.  Authentication of quantum messages , 2001, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[19]  Takeshi Koshiba,et al.  Computational Indistinguishability Between Quantum States and Its Cryptographic Application , 2005, EUROCRYPT.

[20]  Andris Ambainis,et al.  Private quantum channels , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[21]  Li Yang,et al.  Quantum Public-Key Encryption with Information Theoretic Security , 2010, 1006.0354.

[22]  Su-Juan Qin,et al.  Quantum asymmetric cryptography with symmetric keys , 2008, 0810.2859.

[23]  Zeng Gui-Hua,et al.  A realizable quantum encryption algorithm for qubits , 2005 .

[24]  P. Oscar Boykin Information Security and Quantum Mechanics: Security of Quantum Protocols , 2002 .

[25]  Li Yang,et al.  Quantum Public-Key Cryptosystem Based on Classical NP-Complete Problem , 2003, quant-ph/0310076.

[26]  Debbie W. Leung,et al.  Quantum vernam cipher , 2000, Quantum Inf. Comput..