A tight degree 4 sum-of-squares lower bound for the Sherrington–Kirkpatrick Hamiltonian

We show that, if $\mathbf{W} \in \mathbb{R}^{N \times N}_{\mathsf{sym}}$ is drawn from the gaussian orthogonal ensemble, then with high probability the degree 4 sum-of-squares relaxation cannot certify an upper bound on the objective $N^{-1} \cdot \mathbf{x}^\top \mathbf{W} \mathbf{x}$ under the constraints $x_i^2 - 1 = 0$ (i.e. $\mathbf{x} \in \{ \pm 1 \}^N$) that is asymptotically smaller than $\lambda_{\max}(\mathbf{W}) \approx 2$. We also conjecture a proof technique for lower bounds against sum-of-squares relaxations of any degree held constant as $N \to \infty$, by proposing an approximate pseudomoment construction.

[1]  Dustin G. Mixon,et al.  Steiner equiangular tight frames redux , 2015, 2015 International Conference on Sampling Theory and Applications (SampTA).

[2]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[3]  Pravesh Kothari,et al.  A Nearly Tight Sum-of-Squares Lower Bound for the Planted Clique Problem , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[4]  Sidhanth Mohanty,et al.  Lifting sum-of-squares lower bounds: degree-2 to degree-4 , 2019, STOC.

[5]  B. Collins,et al.  Integration with Respect to the Haar Measure on Unitary, Orthogonal and Symplectic Group , 2004, math-ph/0402073.

[6]  Eliran Subag Following the Ground States of Full‐RSB Spherical Spin Glasses , 2018 .

[7]  M. Talagrand,et al.  Probability in Banach Spaces: Isoperimetry and Processes , 1991 .

[8]  P. Massart,et al.  Adaptive estimation of a quadratic functional by model selection , 2000 .

[9]  Afonso S. Bandeira,et al.  Sum-of-Squares Optimization and the Sparsity Structure of Equiangular Tight Frames , 2019, 2019 13th International conference on Sampling Theory and Applications (SampTA).

[10]  Mátyás A. Sustik,et al.  On the existence of equiangular tight frames , 2007 .

[11]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[12]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[13]  Andrea Montanari,et al.  Semidefinite programs on sparse random graphs and their application to community detection , 2015, STOC.

[14]  Prasad Raghavendra,et al.  On the Bit Complexity of Sum-of-Squares Proofs , 2017, ICALP.

[15]  D. Panchenko The Sherrington-Kirkpatrick Model , 2013 .

[16]  R. Vershynin Spectral norm of products of random and deterministic matrices , 2008, 0812.2432.

[17]  Pascal Maillard,et al.  The algorithmic hardness threshold for continuous random energy models , 2018, Mathematical Statistics and Learning.

[18]  Nicholas I. M. Gould,et al.  SIAM Journal on Optimization , 2012 .

[19]  David Steurer,et al.  Sum-of-squares proofs and the quest toward optimal algorithms , 2014, Electron. Colloquium Comput. Complex..

[20]  Andrea Montanari,et al.  Extremal Cuts of Sparse Random Graphs , 2015, ArXiv.

[21]  Dmitry Panchenko,et al.  The Parisi ultrametricity conjecture , 2011, 1112.1003.

[22]  S. Kirkpatrick,et al.  Solvable Model of a Spin-Glass , 1975 .

[23]  Alan F. Beardon Algebra and Geometry , 2005 .

[24]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[25]  Afonso S. Bandeira,et al.  A Gramian Description of the Degree 4 Generalized Elliptope , 2018, 1812.11583.

[26]  Robert M Thrall,et al.  Mathematics of Operations Research. , 1978 .

[27]  Afonso S. Bandeira,et al.  Computational Hardness of Certifying Bounds on Constrained PCA Problems , 2019, ITCS.

[28]  Giorgio Parisi,et al.  Infinite Number of Order Parameters for Spin-Glasses , 1979 .

[29]  M. Rudelson Invertibility of random matrices: norm of the inverse , 2005, math/0507024.

[30]  Peter G. Casazza,et al.  Real equiangular frames , 2008, 2008 42nd Annual Conference on Information Sciences and Systems.

[31]  Chi-Kwong Li,et al.  A Note on Extreme Correlation Matrices , 1994, SIAM J. Matrix Anal. Appl..

[32]  Rekha R. Thomas,et al.  Semidefinite Optimization and Convex Algebraic Geometry , 2012 .

[33]  Andrej Risteski,et al.  Mean-field approximation, convex hierarchies, and the optimality of correlation rounding: a unified perspective , 2018, STOC.

[34]  R. Lathe Phd by thesis , 1988, Nature.

[35]  David Steurer,et al.  Efficient Bayesian Estimation from Few Samples: Community Detection and Related Problems , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[36]  M. Laurent Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .

[37]  Andrea Montanari,et al.  Optimization of the Sherrington-Kirkpatrick Hamiltonian , 2018, 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS).

[38]  P. Parrilo,et al.  Sparse sum-of-squares certificates on finite abelian groups , 2015, 1503.01207.

[39]  Dustin G. Mixon,et al.  Tables of the existence of equiangular tight frames , 2015, ArXiv.

[40]  M. Rudelson,et al.  The Littlewood-Offord problem and invertibility of random matrices , 2007, math/0703503.

[41]  W. Browder,et al.  Annals of Mathematics , 1889 .

[42]  P. K. Suetin,et al.  Linear Algebra and Geometry , 1989 .

[43]  Samuel B. Hopkins,et al.  Bayesian estimation from few samples: community detection and related problems , 2017, ArXiv.

[44]  Adam Kurpisz,et al.  Sum-of-Squares Hierarchy Lower Bounds for Symmetric Formulations , 2016, IPCO.

[45]  Michael J. Todd,et al.  Mathematical programming , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[46]  Michel Deza,et al.  Geometry of cuts and metrics , 2009, Algorithms and combinatorics.

[47]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[48]  October I Physical Review Letters , 2022 .

[49]  Ryan O'Donnell,et al.  SOS Is Not Obviously Automatizable, Even Approximately , 2016, ITCS.

[50]  Afonso S. Bandeira,et al.  Notes on Computational Hardness of Hypothesis Testing: Predictions using the Low-Degree Likelihood Ratio , 2019, ArXiv.

[51]  S. Chatterjee,et al.  MULTIVARIATE NORMAL APPROXIMATION USING EXCHANGEABLE PAIRS , 2007, math/0701464.

[52]  M. Ledoux The concentration of measure phenomenon , 2001 .

[53]  Pablo A. Parrilo,et al.  Sparse sums of squares on finite abelian groups and improved semidefinite lifts , 2016, Math. Program..

[54]  Monique Laurent,et al.  Lower Bound for the Number of Iterations in Semidefinite Hierarchies for the Cut Polytope , 2003, Math. Oper. Res..

[55]  M. Mézard,et al.  Spin Glass Theory And Beyond: An Introduction To The Replica Method And Its Applications , 1986 .

[56]  Andrea Montanari,et al.  A statistical model for tensor PCA , 2014, NIPS.

[57]  M. Talagrand The parisi formula , 2006 .