CHAPTER 14 – Set-Valued Integration and Set-Valued Probability Theory: An Overview

This chapter presents an overview of set-valued integration and set-valued probability theory. The mathematical modelization based on multifunctions has shown its great adaptability and relevance for a long time. The integration of strongly measurable multifunctions with those that can be approximated by simple measurable multifunctions in the sense of the Hausdorff distance is analyzed in the chapter. The weakly measurable multifunctions in connection with graph-measurability are presented in the chapter. The Hiai–Umegaki set-valued conditional expectation is examined and set-valued measures are considered in the chapter. The definition and the main properties of set-valued martingales and some basic facts about Gaussian multifunctions and the set-valued central limit theorem are presented in the chapter. The integration of strongly measurable multifunctions is elaborated in the chapter. It allows for a lot of stability properties and for general results of existence of measurable selections, especially in connection with the graph measurability. It is shown in the chapter that the measurability of a closed-valued multifunction can be expressed in terms of distance functions and is connected with the notion of Castaing representation.

[1]  J. Dupacová,et al.  ASYMPTOTIC BEHAVIOR OF STATISTICAL ESTIMATORS AND OF OPTIMAL SOLUTIONS OF STOCHASTIC OPTIMIZATION PROBLEMS , 1988 .

[2]  Tommy Norberg,et al.  Convergence and Existence of Random Set Distributions , 1984 .

[3]  Wolfgang Weil,et al.  An application of the central limit theorem for banach-space-valued random variables to the theory of random sets , 1982 .

[4]  Sergiu Hart,et al.  Equally distributed correspondences , 1974 .

[5]  Z. Artstein Relaxed Multifunctions and Young Multimeasures , 1998 .

[6]  W. Urbina,et al.  Measurable multifunctions in nonseparable Banach spaces , 1997 .

[7]  Erik J. Balder,et al.  A Unifying Note on Fatou's Lemma in Several Dimensions , 1984, Math. Oper. Res..

[8]  Yukio Ogura,et al.  Convergence of set-valued and fuzzy-valued martingales , 1999, Fuzzy Sets Syst..

[9]  Équations différentielles multivoques dans les espaces vectoriels localement convexes , 1969 .

[10]  R. Wijsman Convergence of sequences of convex sets, cones and functions. II , 1966 .

[11]  C. Hess,et al.  Théorème de la convergence dominée pour l'intégrale et l'espérance conditionnelle des ensembles aléatoires non bornés et des intégrandes , 1988 .

[12]  Kazimierz Musiał,et al.  Topics in the theory of Pettis integration , 1991 .

[13]  Nicholas C. Yannelis,et al.  Fatou’s lemma in infinite-dimensional spaces , 1988 .

[14]  C. J. Himmelberg,et al.  On measurable relation , 1981 .

[15]  C. Choirat,et al.  A FUNCTIONAL VERSION OF THE BIRKHOFF ERGODIC THEOREM FOR A NORMAL INTEGRAND: A VARIATIONAL APPROACH , 2003 .

[16]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[17]  W. Herer Martingales of Random Subsets of a Metric Space of Negative Curvature , 1997 .

[18]  Erik J. Balder,et al.  Fatou's Lemma for Multifunctions with Unbounded Values , 1995, Math. Oper. Res..

[19]  H. Robbins On the Measure of a Random Set , 1944 .

[20]  Sitadri Bagchi On a. s. convergence of classes of multivalued asymptotic martingales , 1985 .

[21]  M. Fréchet Les éléments aléatoires de nature quelconque dans un espace distancié , 1948 .

[22]  Michel Valadier Intégration de convexes fermés notamment d'épigraphes inf-convolution continue , 1970 .

[23]  J. Bismut,et al.  Intégrales convexes et probabilités , 1973 .

[24]  Loi forte des grands nombres pour des ensembles aléatoires non bornés à valeurs dans un espace de Banach séparable , 1985 .

[25]  M. Tsukada Convergence of best approximations in a smooth Banach space , 1984 .

[26]  C. Hess,et al.  A Lévy Type Martingale Convergence Theorem for Random Sets with Unbounded Values , 1999 .

[27]  Z. Artstein,et al.  CONVEXIFICATION IN LIMIT LAWS OF RANDOM SETS IN BANACH SPACES , 1985 .

[28]  Werner Hildenbrand,et al.  On Fatou's Lemma in several dimensions , 1971 .

[29]  W. Hildenbrand Core and Equilibria of a Large Economy. , 1974 .

[30]  S. J. Leese Multifunctions of Souslin type , 1974, Bulletin of the Australian Mathematical Society.

[31]  Dinh Quang Luu Applications of set-valued Radon-Nikodym theorems to convergence of multivalued $L^1$-amarts. , 1984 .

[32]  G. Matheron Random Sets and Integral Geometry , 1976 .

[33]  N. Cressie A central limit theorem for random sets , 1979 .

[34]  J. Neveu Convergence presque sûre de martingales multivoques , 1972 .

[35]  Noel A Cressie,et al.  Strong limit-theorem for random sets , 1978 .

[36]  Gerald Beer,et al.  A Polish topology for the closed subsets of a Polish space , 1991 .

[37]  K. Schürger Ergodic theorems for subadditive superstationary families of convex compact random sets , 1983 .

[38]  I. V. Evstigneev,et al.  Regular Conditional Expectations of Correspondences , 1977 .

[39]  Dong Wenlong,et al.  On representation and regularity of continuous parameter multivalued martingales , 1998 .

[40]  Christian Hess,et al.  Convergence of Conditional Expectations for Unbounded Random Sets, Integrands, and Integral Functionals , 1991, Math. Oper. Res..

[41]  Roger J.-B. Wets,et al.  Approximating the integral of a multifunction , 1988 .

[42]  K. Vind,et al.  EDGEWORTH-ALLOCATIONS IN AN EXCHANGE ECONOMY WITH MANY TRADERS , 1964 .

[43]  U. Mosco Convergence of convex sets and of solutions of variational inequalities , 1969 .

[44]  Gerald Beer,et al.  Topologies on Closed and Closed Convex Sets , 1993 .

[45]  Charles L. Byrne,et al.  Remarks on the set-valued integrals of Debreu and Aumann , 1978 .

[46]  Zvi Artstein,et al.  A note on fatou's lemma in several dimensions , 1979 .

[47]  Roger J.-B. Wets,et al.  On the convergence of closed-valued measurable multifunctions , 1981 .

[48]  Ana Colubi,et al.  A generalized strong law of large numbers , 1999 .

[49]  R. Wijsman Convergence of sequences of convex sets, cones and functions , 1964 .

[50]  N. Etemadi An elementary proof of the strong law of large numbers , 1981 .

[51]  J. Neveu,et al.  Martingales à temps discret , 1973 .

[52]  R. Rockafellar,et al.  Integral functionals, normal integrands and measurable selections , 1976 .

[53]  Es-Sahib Aziz,et al.  Barycentre canonique pour un espace métrique à courbure négative , 1999 .

[54]  G. Choquet Theory of capacities , 1954 .

[55]  工薄 弘吉,et al.  Dependent Experiments and Sufficient Statistics , 1954 .

[56]  M -convergence and regularity of multivalued martingales: epi-martingales (French) , 1990 .

[57]  W. Herer Espérance mathématique au sens de Doss d'une variable aléatoire à valeurs dans un espace métrique , 1986 .

[58]  Nikolaos S. Papageorgiou On the theory of Banach space valued multifunctions. 1. Integration and conditional expectation , 1985 .

[59]  C. Castaing Sur les multi-applications mesurables , 1967 .

[60]  J. Daures,et al.  Version multivoque du théorème de Doob , 1973 .

[61]  Zvi Artstein Weak Convergence of Set-Valued Functions and Control , 1975 .

[62]  Yeneng Sun,et al.  Integrals of Set-Valued Functions with a Countable Range , 1996, Math. Oper. Res..

[63]  Nikolaos S. Papageorgiou On the theory of Banach space valued multifunctions. 2. Set valued martingales and set valued measures , 1985 .

[64]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[65]  Z. Artstein Parametrized integration of multifunctions with applications to control and optimization , 1989 .

[66]  Fumio Hiai,et al.  Convergence of conditional expectations and strong laws of large numbers for multivalued random variables , 1985 .

[67]  G. Krupa Convergence of unbounded multivalued supermartingales in the Mosco and slice topologies , 1997 .

[68]  Tommy Norberg,et al.  Random capacities and their distributions , 1986 .

[69]  U. Mosco On the continuity of the Young-Fenchel transform , 1971 .

[70]  F. Hiai,et al.  Integrals, conditional expectations, and martingales of multivalued functions , 1977 .

[71]  Rudolf Kruse,et al.  On the variance of random sets , 1987 .

[72]  Survey of Measurable Selection Theorems: Russian Literature Supplement , 1978 .

[73]  H. H. Schaefer,et al.  Topological Vector Spaces , 1967 .

[74]  L. Santaló Integral geometry and geometric probability , 1976 .

[75]  Christian Hess,et al.  Epi-convergence of sequences of normal integrands and strong consistency of the maximum likelihood estimator , 1996 .

[76]  Ilya Molchanov Limit Theorems for Unions of Random Closed Sets , 1993 .

[77]  C. Hess,et al.  Sur l'existence de sélections martingales et la convergence des surmartingales multivoques , 1991 .

[78]  R. Aumann INTEGRALS OF SET-VALUED FUNCTIONS , 1965 .

[79]  S. Sajid,et al.  Parametrized Integral of Multifunctions in Banach Spaces , 1999 .

[80]  Hans Richter,et al.  Verallgemeinerung eines in der Statistik benötigten Satzes der Maßtheorie , 1963 .

[81]  The Largest Class of Closed Convex Valued Multifunctions for which Effros Measurability and Scalar Measurability Coincide , 1998 .

[82]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[83]  John A. Burns,et al.  Integration of compact set-valued functions , 1975 .

[84]  R. Wets,et al.  Consistency of Minimizers and the SLLN for Stochastic Programs 1 , 1995 .

[85]  E. Balder A unified approach to several results involving integrals of multifunctions , 1994 .

[86]  Daniel H. Wagner Survey of Measurable Selection Theorems , 1977 .

[87]  R. Cerf Large deviations for sums of i.i.d. random compact sets , 1999 .

[88]  Robert L. Taylor,et al.  Laws of Large Numbers for Random Sets , 1997 .

[89]  Mosco approximation of integrands and integral functionals , 1996 .

[90]  C. Castaing,et al.  Convex analysis and measurable multifunctions , 1977 .

[91]  G. Krupa Komlós Theorem for Unbounded Random Sets , 2000 .

[92]  Marjorie G. Hahn,et al.  Limit theorems for random sets: An application of probability in banach space results , 1983 .

[93]  Zvi Artstein,et al.  Set-valued measures , 1972 .

[94]  S. J. Leese Measurable selections in normed spaces , 1974, Proceedings of the Edinburgh Mathematical Society.

[95]  MEASURABLE SELECTION THEOREMS AND PROBABILISTIC CONTROL MODELS IN GENERAL TOPOLOGICAL SPACES , 1988 .

[96]  J. Schwartz,et al.  Linear Operators. Part I: General Theory. , 1960 .

[97]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[98]  C. Hess,et al.  On the Pettis Integral of Closed Valued Multifunctions , 2000 .

[99]  Charles Castaing Méthode de compacité et de décomposition applications: Minimisation, convergence des martingales, lemma de Fatou multivoque , 1993 .

[100]  Roger J.-B. Wets,et al.  On the Convergence in Probability of Random Sets (Measurable Multifunctions) , 1986, Math. Oper. Res..

[101]  M. Puri,et al.  Limit theorems for random compact sets in Banach space , 1985, Mathematical Proceedings of the Cambridge Philosophical Society.

[102]  David Ross Random Sets Without Separability , 1986 .

[103]  Christian Hess,et al.  Multivalued strong laws of large numbers in the slice topology. Application to integrands , 1994 .

[104]  Erik J. Balder,et al.  Two Generalizations of Koml os' Theorem with Lower Closure-Type Applications , 1996 .

[105]  Random set limit theorems , 1979, Advances in Applied Probability.

[106]  Zvi Artstein,et al.  Law of Large Numbers for Random Sets and Allocation Processes , 1981, Math. Oper. Res..

[107]  Daniel H. Wagner Integral of a convex-hull-valued function , 1975 .

[108]  C. J. Himmelberg,et al.  On measurable relations , 1982 .

[109]  Constantin Zalinescu,et al.  SET CONVERGENCES. AN ATTEMPT OF CLASSIFICATION , 1993 .

[110]  R. Wets,et al.  On the convergence of sequences of convex sets in finite dimensions , 1979 .

[111]  Michel Valadier Sur l'espérance conditionnelle multivoque non convexe , 1980 .

[112]  Strong Law of Large Numbers with Respect to a Set-Valued Probability Measure , 1983 .

[113]  B. V. Cutsem Martingales de convexes fermés aléatoires en dimension finie , 1972 .

[114]  H. Attouch Variational convergence for functions and operators , 1984 .

[115]  H. Attouch A General Duality Principle for the Sum of Two Operators 1 , 1996 .

[116]  Christian Hess,et al.  Conditional expectation and martingales of random sets , 1999, Pattern Recognit..

[117]  Z. Artstein,et al.  A Strong Law of Large Numbers for Random Compact Sets , 1975 .

[118]  Zvi Artstein,et al.  Distributions of random sets and random selections , 1983 .

[119]  J. Neveu,et al.  Discrete Parameter Martingales , 1975 .

[120]  G. Debreu Integration of correspondences , 1967 .

[121]  R. Wets,et al.  On the Convergence in Distribution of Measurable Multifunctions Random Sets Normal Integrands, Stochastic Processes and Stochastic Infima , 1986 .

[122]  The Radon-Nikodým derivative of a correspondence , 1972 .

[123]  Christian Hess,et al.  On multivalued martingales whose values may be unbounded: martingale selectors and Mosco convergence , 1991 .

[124]  Théoràme ergodique ponctuel et lois fortes des grands nombres pour des points aléatoires d'un espace métrique à courbure négative , 1997 .

[125]  Ilya Molchanov,et al.  Statistical Problems for Random Sets , 1997 .

[126]  Toshihiro Uemura,et al.  A law of large numbers for random sets , 1993 .

[127]  David Schmeidler,et al.  Fatou’s lemma in several dimensions , 1970 .

[128]  F. Hiai Radon-Nikodym theorems for set-valued measures , 1978 .

[129]  Zhen Wang,et al.  On convergence and closedness of multivalued martingales , 1994 .