On the application of a membrane air—liquid contactor for air dehumidification

Abstract This paper deals with a new approach to absorption air-handling systems working with liquid desiccants. A hydrophobic synthetic membrane, permeable to vapour but not to liquid, acts as a porous barrier between a hygroscopic solution and moist air. The results of a first series of experiments performed on a microfibre polyethylene membrane are presented and discussed in relation to an analytical model developed to analyse non-isothermal vapour flux through a hydrophobic membrane. Theoretical analysis is carried out to study the influence of different parameters affecting vapour mass flux through the membrane. The results show that considerable vapour flux can be exchanged to/from a liquid desiccant and an air stream through the membrane, suggesting the feasibility of using compact-membrane absorber and desorber units in air handling. Furthermore, membrane contactors can achieve energy saving by performing desiccant reactivation at moderate temperatures (310–330 K).

[1]  R. Shah,et al.  Handbook of single-phase convective heat transfer , 1987 .

[2]  S. T. Taylor,et al.  HVAC systems and equipment , 1990 .

[3]  A. Adamson Physical chemistry of surfaces , 1960 .

[4]  Robert Rautenbach,et al.  Some considerations on mass-transfer resistances in solution—diffusion-type membrane processes , 1994 .

[5]  S. R. Wickramasinghe,et al.  Better hollow fiber contactors , 1991 .

[6]  F.Petrus Cuperus,et al.  Applications of membrane technology to food processing , 1993 .

[7]  H. Strathmann,et al.  Gas separation and pervaporation: Membrane and module development , 1990 .

[8]  Anthony G. Fane,et al.  Gas and vapour transport through microporous membranes. I. Knudsen-Poiseuille transition , 1990 .

[9]  S. Hwang,et al.  Effect of boundary layer mass transfer resistance in the pervaporation of dilute organics , 1992 .

[10]  H. Janssen,et al.  Industrial application of vapour permeation , 1991 .

[11]  J. M. Zárate,et al.  Non-isothermal solute transport through PTFE membranes , 1992 .

[12]  L. Greenspan Humidity Fixed Points of Binary Saturated Aqueous Solutions , 1977, Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry.

[13]  F. Kreith,et al.  Principles of heat transfer , 1962 .

[14]  C Linder,et al.  Continuous ethanol production by immobilized yeast reactor coupled with membrane pervaporation unit , 1991, Biotechnology and bioengineering.

[15]  L. Riedel Die Wärmeleitfähigkeit von wäßrigen Lösungen starker Elektrolyte , 1951 .

[16]  John R. Howell,et al.  The Performance of Various Types of Regenerators for Liquid Desiccants , 1981 .

[17]  Anthony G. Fane,et al.  Gas and vapour transport through microporous membranes. II. Membrane distillation , 1990 .

[18]  John R. Howell,et al.  Optimization of Liquid Desiccant Systems for Solar/Geothermal Dehumidification and Cooling , 1981 .

[19]  Robert E. Wilson,et al.  Fundamentals of momentum, heat, and mass transfer , 1969 .

[20]  H. Fleming Membrane Pervaporation: Separation of Organic/aqueous Mixtures , 1990 .

[21]  K. W. Böddeker Terminology in pervaporation , 1990 .