Where Does EEG Come From and What Does It Mean?

Electroencephalography (EEG) has been instrumental in making discoveries about cognition, brain function, and dysfunction. However, where do EEG signals come from and what do they mean? The purpose of this paper is to argue that we know shockingly little about the answer to this question, to highlight what we do know, how important the answers are, and how modern neuroscience technologies that allow us to measure and manipulate neural circuits with high spatiotemporal accuracy might finally bring us some answers. Neural oscillations are perhaps the best feature of EEG to use as anchors because oscillations are observed and are studied at multiple spatiotemporal scales of the brain, in multiple species, and are widely implicated in cognition and in neural computations.

[1]  Bingni W. Brunton,et al.  Rats and Humans Can Optimally Accumulate Evidence for Decision-Making , 2013, Science.

[2]  Michael J. Morais,et al.  Global network influences on local functional connectivity , 2015, Nature Neuroscience.

[3]  Robert T. Knight,et al.  Five-dimensional neuroimaging: Localization of the time–frequency dynamics of cortical activity , 2008, NeuroImage.

[4]  Michael X Cohen,et al.  Comparison of linear spatial filters for identifying oscillatory activity in multichannel data , 2016, Journal of Neuroscience Methods.

[5]  Karl J. Friston,et al.  The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields , 2008, PLoS Comput. Biol..

[6]  Stefano Panzeri,et al.  Modelling and analysis of local field potentials for studying the function of cortical circuits , 2013, Nature Reviews Neuroscience.

[7]  Saskia Haegens,et al.  Inter- and intra-individual variability in alpha peak frequency , 2014, NeuroImage.

[8]  Jessica A. Cardin,et al.  Dissecting local circuits in vivo: Integrated optogenetic and electrophysiology approaches for exploring inhibitory regulation of cortical activity , 2012, Journal of Physiology-Paris.

[9]  Krish D. Singh,et al.  A new approach to neuroimaging with magnetoencephalography , 2005, Human brain mapping.

[10]  Mriganka Sur,et al.  An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity , 2015, Nature Neuroscience.

[11]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[12]  Jack W. Tsao,et al.  Handbook of brain microcircuits Gordon M. Shepherd , 2012, Journal of the Neurological Sciences.

[13]  Michael W. Reimann,et al.  A Biophysically Detailed Model of Neocortical Local Field Potentials Predicts the Critical Role of Active Membrane Currents , 2013, Neuron.

[14]  B. Porjesz,et al.  Advances in Electrophysiological Research , 2015, Alcohol research : current reviews.

[15]  M. Quyen The brainweb of cross-scale interactions , 2011 .

[16]  Derek C. Penn,et al.  Darwin's mistake: Explaining the discontinuity between human and nonhuman minds , 2008, Behavioral and Brain Sciences.

[17]  J. Ojemann,et al.  Uniquely Hominid Features of Adult Human Astrocytes , 2009, The Journal of Neuroscience.

[18]  Nancy Kopell,et al.  Alpha-Frequency Rhythms Desynchronize over Long Cortical Distances: A Modeling Study , 2000, Journal of Computational Neuroscience.

[19]  Klaas E. Stephan,et al.  Dynamic causal modelling: A critical review of the biophysical and statistical foundations , 2011, NeuroImage.

[20]  O. Jensen,et al.  Asymmetric Amplitude Modulations of Brain Oscillations Generate Slow Evoked Responses , 2008, The Journal of Neuroscience.

[21]  Vladimir Litvak,et al.  Synchronized neural oscillations and the pathophysiology of Parkinson's disease. , 2013, Current opinion in neurology.

[22]  B. N. Cuffin,et al.  Experimental tests of EEG source localization accuracy in spherical head models , 2001, Clinical Neurophysiology.

[23]  M. Fuchs,et al.  A standardized boundary element method volume conductor model , 2002, Clinical Neurophysiology.

[24]  Kevin Whittingstall,et al.  Effects of neural synchrony on surface EEG. , 2014, Cerebral cortex.

[25]  Terrence J. Sejnowski,et al.  Delay Differential Analysis of Time Series , 2015, Neural Computation.

[26]  P. Fries Rhythms for Cognition: Communication through Coherence , 2015, Neuron.

[27]  Eric Maris,et al.  Rhythmic Components in Extracranial Brain Signals Reveal Multifaceted Task Modulation of Overlapping Neuronal Activity , 2016, PloS one.

[28]  K. Harris,et al.  Spontaneous Events Outline the Realm of Possible Sensory Responses in Neocortical Populations , 2009, Neuron.

[29]  Michael X Cohen,et al.  Analyzing Neural Time Series Data: Theory and Practice , 2014 .

[30]  Konrad P Kording,et al.  How advances in neural recording affect data analysis , 2011, Nature Neuroscience.

[31]  Y. Saalmann,et al.  The Pulvinar Regulates Information Transmission Between Cortical Areas Based on Attention Demands , 2012, Science.

[32]  A. Evans,et al.  Pitfalls in the dipolar model for the neocortical EEG sources. , 2012, Journal of neurophysiology.

[33]  C. D. de Kock,et al.  Mechanisms Underlying the Rules for Associative Plasticity at Adult Human Neocortical Synapses , 2013, The Journal of Neuroscience.

[34]  Antoine Lutti,et al.  Discrimination of cortical laminae using MEG , 2014, NeuroImage.

[35]  Michael X. Cohen,et al.  Midfrontal conflict-related theta-band power reflects neural oscillations that predict behavior. , 2013, Journal of neurophysiology.

[36]  J. Fermaglich Electric Fields of the Brain: The Neurophysics of EEG , 1982 .

[37]  Y. Okada,et al.  Contribution of Ionic Currents to Magnetoencephalography (MEG) and Electroencephalography (EEG) Signals Generated by Guinea‐Pig CA3 Slices , 2003, The Journal of physiology.

[38]  Philippa J. Karoly,et al.  Seizure Prediction: Science Fiction or Soon to Become Reality? , 2015, Current Neurology and Neuroscience Reports.

[39]  Steven A. Goldman,et al.  A Competitive Advantage by Neonatally Engrafted Human Glial Progenitors Yields Mice Whose Brains Are Chimeric for Human Glia , 2014, The Journal of Neuroscience.

[40]  A. Engel,et al.  Spectral fingerprints of large-scale neuronal interactions , 2012, Nature Reviews Neuroscience.

[41]  Y. Okada,et al.  Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals , 2006, The Journal of physiology.

[42]  G. Fishell,et al.  Interneuron cell types are fit to function , 2014, Nature.

[43]  Xiao-Jing Wang Neurophysiological and computational principles of cortical rhythms in cognition. , 2010, Physiological reviews.

[44]  Donald J Bolger,et al.  The neurophysiological bases of EEG and EEG measurement: a review for the rest of us. , 2014, Psychophysiology.

[45]  Dominique L. Pritchett,et al.  Quantitative analysis and biophysically realistic neural modeling of the MEG mu rhythm: rhythmogenesis and modulation of sensory-evoked responses. , 2009, Journal of neurophysiology.

[46]  Pieter R. Roelfsema,et al.  Distinct Roles of the Cortical Layers of Area V1 in Figure-Ground Segregation , 2013, Current Biology.

[47]  F. D. Silva,et al.  EEG and MEG: Relevance to Neuroscience , 2013, Neuron.

[48]  Bart Gips,et al.  Temporal coding organized by coupled alpha and gamma oscillations prioritize visual processing , 2014, Trends in Neurosciences.

[49]  J. Schoffelen,et al.  Source connectivity analysis with MEG and EEG , 2009, Human brain mapping.

[50]  Stephanie R. Jones,et al.  Local Field Potential, Relationship to Electroencephalography (EEG) and Magnetoencephalography (MEG) , 2014, Encyclopedia of Computational Neuroscience.

[51]  N. Logothetis,et al.  Scaling Brain Size, Keeping Timing: Evolutionary Preservation of Brain Rhythms , 2013, Neuron.

[52]  Erika E Fanselow,et al.  Selective, state-dependent activation of somatostatin-expressing inhibitory interneurons in mouse neocortex. , 2008, Journal of neurophysiology.

[53]  E. Maris,et al.  Physiological Plausibility Can Increase Reproducibility in Cognitive Neuroscience , 2016, Trends in Cognitive Sciences.

[54]  T. Sejnowski,et al.  Cortical Enlightenment: Are Attentional Gamma Oscillations Driven by ING or PING? , 2009, Neuron.

[55]  Nikos K. Logothetis,et al.  fMRI at High Spatial Resolution: Implications for BOLD-Models , 2016, Front. Comput. Neurosci..

[56]  Alain de Cheveigné,et al.  Time-shift denoising source separation , 2010, Journal of Neuroscience Methods.

[57]  Walter J Freeman,et al.  Mechanism and significance of global coherence in scalp EEG , 2015, Current Opinion in Neurobiology.

[58]  Michael X. Cohen,et al.  A neural microcircuit for cognitive conflict detection and signaling , 2014, Trends in Neurosciences.

[59]  N. Crone,et al.  High-frequency gamma oscillations and human brain mapping with electrocorticography. , 2006, Progress in brain research.

[60]  S. Cole,et al.  Brain Oscillations and the Importance of Waveform Shape , 2017, Trends in Cognitive Sciences.

[61]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[62]  S. Jones,et al.  Distinguishing mechanisms of gamma frequency oscillations in human current source signals using a computational model of a laminar neocortical network , 2013, Front. Hum. Neurosci..

[63]  Michele Giugliano,et al.  Brief wide-field photostimuli evoke and modulate oscillatory reverberating activity in cortical networks , 2016, Scientific Reports.

[64]  J. Lisman,et al.  The Theta-Gamma Neural Code , 2013, Neuron.

[65]  Denis Fize,et al.  Contextual Congruency Effect in Natural Scene Categorization: Different Strategies in Humans and Monkeys (Macaca mulatta) , 2015, PloS one.

[66]  Matti Stenroos,et al.  Minimum-norm cortical source estimation in layered head models is robust against skull conductivity error☆☆☆ , 2013, NeuroImage.

[67]  S. Makeig,et al.  Mining event-related brain dynamics , 2004, Trends in Cognitive Sciences.

[68]  Daniele Linaro,et al.  High Bandwidth Synaptic Communication and Frequency Tracking in Human Neocortex , 2014, PLoS biology.

[69]  Ned T. Sahin,et al.  Dynamic circuit motifs underlying rhythmic gain control, gating and integration , 2014, Nature Neuroscience.

[70]  U. Mitzdorf Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. , 1985, Physiological reviews.

[71]  G. Buzsáki,et al.  Mechanisms of gamma oscillations. , 2012, Annual review of neuroscience.

[72]  Sylvain Baillet,et al.  High-resolution retinotopic maps estimated with magnetoencephalography , 2017, NeuroImage.

[73]  Justin M. Ales,et al.  How to use fMRI functional localizers to improve EEG/MEG source estimation , 2015, Journal of Neuroscience Methods.

[74]  Krish D. Singh,et al.  Which “neural activity” do you mean? fMRI, MEG, oscillations and neurotransmitters , 2012, NeuroImage.

[75]  C. Koch,et al.  The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes , 2012, Nature Reviews Neuroscience.

[76]  Nicolas Brunel,et al.  Author's Personal Copy Understanding the Relationships between Spike Rate and Delta/gamma Frequency Bands of Lfps and Eegs Using a Local Cortical Network Model , 2022 .

[77]  Bingni W. Brunton,et al.  Extracting spatial–temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition , 2014, Journal of Neuroscience Methods.

[78]  C. Koch,et al.  Cell type- and activity-dependent extracellular correlates of intracellular spiking. , 2015, Journal of neurophysiology.

[79]  S. Jones When brain rhythms aren't ‘rhythmic’: implication for their mechanisms and meaning , 2016, Current Opinion in Neurobiology.

[80]  E. Niedermeyer,et al.  The Clinical Relevance of EEG Interpretation , 2003, Clinical EEG.

[81]  Saskia Haegens,et al.  Laminar Profile and Physiology of the α Rhythm in Primary Visual, Auditory, and Somatosensory Regions of Neocortex , 2015, The Journal of Neuroscience.

[82]  Michael X Cohen,et al.  Multivariate cross-frequency coupling via generalized eigendecomposition , 2017, bioRxiv.

[83]  B. Connors,et al.  Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. , 1991, Science.

[84]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[85]  David Rudrauf,et al.  Frequency flows and the time-frequency dynamics of multivariate phase synchronization in brain signals , 2006, NeuroImage.

[86]  Karl J. Friston,et al.  Canonical Microcircuits for Predictive Coding , 2012, Neuron.

[87]  Michael W. Cole,et al.  Cingulate cortex: Diverging data from humans and monkeys , 2009, Trends in Neurosciences.

[88]  Klas H. Pettersen,et al.  Modeling the Spatial Reach of the LFP , 2011, Neuron.

[89]  W. Klimesch,et al.  EEG alpha oscillations: The inhibition–timing hypothesis , 2007, Brain Research Reviews.

[90]  René Scheeringa,et al.  The relationship between oscillatory EEG activity and the laminar-specific BOLD signal , 2016, Proceedings of the National Academy of Sciences.

[91]  N. Logothetis,et al.  Frequency-Band Coupling in Surface EEG Reflects Spiking Activity in Monkey Visual Cortex , 2009, Neuron.

[92]  Á. Pascual-Leone,et al.  Microstates in resting-state EEG: Current status and future directions , 2015, Neuroscience & Biobehavioral Reviews.

[93]  Alexander A. Fingelkurts,et al.  Topographic mapping of rapid transitions in EEG multiple frequencies: EEG frequency domain of operational synchrony , 2010, Neuroscience Research.

[94]  R. VanRullen Perceptual Cycles , 2016, Trends in Cognitive Sciences.

[95]  F. H. Lopes da Silva,et al.  Relative contributions of intracortical and thalamo-cortical processes in the generation of alpha rhythms, revealed by partial coherence analysis. , 1980, Electroencephalography and clinical neurophysiology.

[96]  John S Ebersole,et al.  Advances in Spike Localization with EEG Dipole Modeling , 2009, Clinical EEG and neuroscience.

[97]  Peter De Weerd,et al.  Parametric variation of gamma frequency and power with luminance contrast: A comparative study of human MEG and monkey LFP and spike responses , 2015, NeuroImage.