Formate as a key intermediate in CO2 utilization

Carbon Capture and Utilization (CCU) presents a great opportunity. CO2 can be electrocatalytically converted to formate. The subsequent formate to oxalate coupling reaction (FOCR), which has been studied for two centuries, is critically discussed.

[1]  N. R. Shiju,et al.  Stepping Stones in CO2 Utilization: Optimizing the Formate to Oxalate Coupling Reaction Using Response Surface Modeling , 2021, ACS sustainable chemistry & engineering.

[2]  N. R. Shiju,et al.  Towards Sustainable Oxalic Acid from CO2 and Biomass , 2021, ChemSusChem.

[3]  N. López,et al.  Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution , 2021, Nature Catalysis.

[4]  P. R. Yaashikaa,et al.  A comprehensive review on different approaches for CO2 utilization and conversion pathways , 2021 .

[5]  N. R. Shiju,et al.  Monomers from CO2: Superbases as Catalysts for Formate‐to‐Oxalate Coupling , 2021, ChemSusChem.

[6]  Atul K. Jain,et al.  Global Carbon Budget 2020 , 2020, Earth System Science Data.

[7]  M. Koper,et al.  Optimizing the Electrochemical Reduction of CO2 to Formate: A State-of-the-Art Analysis , 2020, ACS Sustainable Chemistry & Engineering.

[8]  Maria A. Murcia Valderrama,et al.  PLGA Barrier Materials from CO2. The influence of Lactide Co-monomer on Glycolic Acid Polyesters , 2020, ACS applied polymer materials.

[9]  A. Nizami,et al.  CO2 utilization: Turning greenhouse gas into fuels and valuable products. , 2020, Journal of environmental management.

[10]  Heng Zhong,et al.  Ni and Zn/ZnO Synergistically Catalyzed Reduction of Bicarbonate into Formate with Water Splitting. , 2019, ACS applied materials & interfaces.

[11]  G. Gruter,et al.  The potential of oxalic – and glycolic acid based polyesters (review). Towards CO2 as a feedstock (Carbon Capture and Utilization – CCU) , 2019, European Polymer Journal.

[12]  N. R. Shiju,et al.  A critical look at the direct catalytic hydrogenation of CO2 to olefins. , 2019, ChemSusChem.

[13]  A. Züttel,et al.  Study of borohydride ionic liquids as hydrogen storage materials , 2019, Journal of Energy Chemistry.

[14]  M. Margallo,et al.  Bringing value to the chemical industry from capture, storage and use of CO2: A dynamic LCA of formic acid production. , 2019, The Science of the total environment.

[15]  T. Jaramillo,et al.  What would it take for renewably powered electrosynthesis to displace petrochemical processes? , 2019, Science.

[16]  M. Kanan,et al.  Carbonate-Promoted Hydrogenation of Carbon Dioxide to Multicarbon Carboxylates , 2018, ACS central science.

[17]  Feng Jiao,et al.  General Techno-Economic Analysis of CO2 Electrolysis Systems , 2018 .

[18]  A. Paparo,et al.  Carbonite, the dianion of carbon dioxide and its metal complexes , 2017, Journal of Organometallic Chemistry.

[19]  G. Millar,et al.  Industrial Production of Formaldehyde Using Polycrystalline Silver Catalyst , 2017 .

[20]  F. Kapteijn,et al.  Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes , 2017, Chemical reviews.

[21]  Lars H. Jepsen,et al.  Metal borohydrides and derivatives - synthesis, structure and properties. , 2017, Chemical Society reviews.

[22]  Charles T. Ryan,et al.  Formate to Oxalate: A Crucial Step for the Conversion of Carbon Dioxide into Multi‐carbon Compounds , 2016 .

[23]  Long Liu,et al.  Biotechnological production of alpha-keto acids: Current status and perspectives. , 2016, Bioresource technology.

[24]  Jie Zheng,et al.  Promoted hydrogen release from alkali metal borohydrides in ionic liquids , 2016 .

[25]  A. Tanksale,et al.  Hydrogenation of Carbon Monoxide into Formaldehyde in Liquid Media , 2016 .

[26]  Vincent Moreau,et al.  CO2 utilization in the perspective of industrial ecology, an overview , 2015 .

[27]  Detlef Stolten,et al.  Closing the loop: Captured CO2 as a feedstock in the chemical industry , 2015 .

[28]  Claudio Ampelli,et al.  CO2 utilization: an enabling element to move to a resource- and energy-efficient chemical and fuel production , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[29]  A. Azapagic,et al.  Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts , 2015 .

[30]  S. Carpenter,et al.  Planetary boundaries: Guiding human development on a changing planet , 2015, Science.

[31]  T. Ema,et al.  Recent progress in catalytic conversions of carbon dioxide , 2014 .

[32]  M. Paskevicius,et al.  Eutectic melting in metal borohydrides. , 2013, Physical chemistry chemical physics : PCCP.

[33]  G. Centi,et al.  Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries , 2013 .

[34]  M. Heravi,et al.  Arylidene pyruvic acids (APAs) in the synthesis of organic compounds , 2012 .

[35]  Jun Liu,et al.  Enzymatic conversion of CO(2) to bicarbonate in functionalized mesoporous silica. , 2012, Microporous and mesoporous materials : the official journal of the International Zeolite Association.

[36]  Liang‐Nian He,et al.  CO2 capture and activation by superbase/polyethylene glycol and its subsequent conversion , 2011 .

[37]  R. Smith,et al.  High-yield reduction of carbon dioxide into formic acid by zero-valent metal/metal oxide redox cycles , 2011 .

[38]  T. Werner,et al.  Sodium Hydride Catalyzed Tishchenko Reaction , 2010 .

[39]  A. J. Hunt,et al.  Generation, capture, and utilization of industrial carbon dioxide. , 2010, ChemSusChem.

[40]  M. Aresta Carbon dioxide as chemical feedstock , 2010 .

[41]  Mikkel Jørgensen,et al.  The teraton challenge. A review of fixation and transformation of carbon dioxide , 2010 .

[42]  P. Kubisa,et al.  Imidazolium ionic liquids with short polyoxyethylene chains , 2008 .

[43]  M. Aresta,et al.  Utilisation of CO2 as a chemical feedstock: opportunities and challenges. , 2007, Dalton transactions.

[44]  Hiroyuki Yasuda,et al.  Transformation of carbon dioxide. , 2007, Chemical reviews.

[45]  C. Hardacre,et al.  Ionic liquids--media for unique phosphorus chemistry. , 2006, Chemical communications.

[46]  Chunshan Song Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing , 2006 .

[47]  Xianai Shi,et al.  Bioreduction of phenylglyoxylic acid to R-(−)-mandelic acid by Saccharomyces cerevisiae FD11b , 2005 .

[48]  L. Strekowski,,et al.  THE TRIFLUOROMETHYL GROUP IN ORGANIC SYNTHESIS. A REVIEW , 1996 .

[49]  H. Ogawa,et al.  THERMAL PHASE TRANSITION OF CESIUM FORMATE , 1995 .

[50]  D. Dollimore,et al.  The thermal decomposition of oxalates: Part 22. The preparation and thermal decomposition of some oxy tungsten(VI) oxalates , 1987 .

[51]  J. Ginos,et al.  Synthesis and properties of the .alpha.-keto acids , 1983 .

[52]  M. S. Chandrasekharaiah,et al.  Thermal decomposition of europium formate and oxalate , 1982 .

[53]  B. Andresen Synthesis of sodium formate-13C and oxalic acid-13C2 , 1977 .

[54]  M. A. Hughes,et al.  The thermal decomposition of alkaline earth formates , 1973 .

[55]  F. Weigel,et al.  Der thermische Abbau von Americium(III)-oxalat, -formiat und -carbonat / Thermal Decomposition of Americium (III) -oxalate, -formiate, and -carbonate , 1971 .

[56]  I. Hisatsune,et al.  The Kinetics of Formate Ion Pyrolysis in Alkali Halide Matrices1,2 , 1966 .

[57]  I. Hisatsune,et al.  The Kinetics of Calcium Formate Pyrolysis in Potassium Bromide Matrix1 , 1965 .

[58]  C. Holley,et al.  The thermal decomposition of scandium formate and oxalate , 1964 .

[59]  D. Whiffen,et al.  Electronic absorption spectra of CO2 - trapped in γ-irradiated crystalline sodium formate , 1962 .

[60]  D. W. Ovenall,et al.  Electron spin resonance and structure of the CO-2radical ion , 1961 .

[61]  H. Brown,et al.  A Study of Solvents for Sodium Borohydride and the Effect of Solvent and the Metal Ion on Borohydride Reductions1 , 1955 .

[62]  A. Day,et al.  A Study of the Mixed Tischtschenko Reaction , 1952 .

[63]  W. Weith,et al.  Ueber synthetische Oxalsäure , 1882 .

[64]  P. Baraldi Thermal behaviour of metal carboxylates: Metal formates , 1979 .

[65]  Y. Masuda,et al.  The Gaseous Products formed in the Thermal Decompositions of Formates , 1973 .

[66]  S. Clough,et al.  An electron spin resonance study of a free radical reaction in crystals of sodium formate , 1965 .

[67]  M. Symons,et al.  44. Unstable intermediates. Part XIV. The formyl radical , 1962 .

[68]  P. Atkins,et al.  561. Oxides and oxyions of the non-metals. Part II. CO2– and NO2 , 1962 .

[69]  M. Symons 48. Unstable intermediates. Part III. Proton interaction in aliphatic free radicals , 1959 .

[70]  Sotozi Takagi Study on the Formation of Sodium Oxalate and Carbonate by the Pyrolysis of Sodium Formate and its Mechanism. II , 1939 .