Simulation of First-Order Chemical Kinetics Using Cellular Automata

Cellular automata are dynamical systems composed of arrays of cells that change their states in a discrete manner following local, but globally applied, rules. It is shown that a two-dimensional asynchronous cellular automaton simulates both the deterministic and the stochastic features of first-order chemical kinetic processes in an especially simple manner, avoiding the chore of solving either the deterministic coupled differential rate equations or the stochastic master equation. Processes illustrated include first-order decay, opposing first-order reactions, consecutive reactions, the steady-state approximation, a rate-limiting step, pre-equilibrium, and parallel competing reactions. The deterministic solutions are seen to emerge as statistical averages in the limit of large cell numbers. Some additional stochastic and statistical features of the solutions are examined.

[1]  Marc Mangel,et al.  Conditioned averages in chemical kinetics , 1981 .

[2]  M. Muir Physical Chemistry , 1888, Nature.

[3]  L. Kier,et al.  A Cellular Automata Model of Dissolution , 1995, Pharmaceutical Research.

[4]  Kapral,et al.  Cellular-automaton model for reactive systems. , 1990, Physical review letters.

[5]  A Pomiankowski GAMES OF LIFE - EXPLORATIONS IN ECOLOGY, EVOLUTION AND BEHAVIOR - SIGMUND,K , 1994 .

[6]  Bruce M. Boghosian Lattice Gases Illustrate the Power of Cellular Automata in Physics , 1991 .

[7]  William L. Hase,et al.  Chemical kinetics and dynamics , 1989 .

[8]  J. Tyson,et al.  A cellular automaton model of excitable media. II: curvature, dispersion, rotating waves and meandering waves , 1990 .

[9]  Cieplak Rupture and coalescence in two-dimensional cellular automata fluids. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  D. T. Kaplan,et al.  Nonlinear dynamics in cardiac conduction. , 1988, Mathematical biosciences.

[11]  S. Ulam,et al.  Adventures of a Mathematician , 2019, Mathematics: People · Problems · Results.

[12]  Gregory A. Wray,et al.  Ontogeny, Phylogeny and Evolution of Form: An Algorithmic Approach , 1986 .

[13]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[14]  B Testa,et al.  A cellular automata model of the hydrophobic effect. , 1995, Pharmaceutical research.

[15]  Lee A. Segel,et al.  Growth and metabolism in mycelial fungi , 1983 .

[16]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[17]  R. Wightman,et al.  Observation of Individual Chemical Reactions in Solution , 1995, Science.

[18]  Lemont B. Kier,et al.  A Cellular Automata Model of Water , 1994, J. Chem. Inf. Comput. Sci..

[19]  Lemont B. Kier,et al.  A Cellular Automata Model of an Aqueous Solution , 1994, J. Chem. Inf. Comput. Sci..

[20]  G. Cocho,et al.  Discrete systems, cell-cell interactions and color pattern of animals. I. Conflicting dynamics and pattern formation. , 1987, Journal of theoretical biology.

[21]  Lemont B. Kier,et al.  A Cellular Automata Model of Oil-Water Partitioning , 1995, J. Chem. Inf. Comput. Sci..

[22]  Ladd,et al.  Application of lattice-gas cellular automata to the Brownian motion of solids in suspension. , 1988, Physical review letters.

[23]  G B Ermentrout,et al.  Cellular automata approaches to biological modeling. , 1993, Journal of theoretical biology.

[24]  Stephen Wolfram,et al.  Theory and Applications of Cellular Automata , 1986 .

[25]  G. Doolen,et al.  Magnetohydrodynamic cellular automata , 1987 .

[26]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[27]  Y. Pomeau,et al.  Lattice-gas automata for the Navier-Stokes equation. , 1986, Physical review letters.

[28]  J. Tyson,et al.  A cellular automaton model of excitable media. III: fitting the Belousov-Zhabotinskiic reaction , 1990 .

[29]  Daniel T. Gillespie,et al.  Approximating the master equation by Fokker–Planck‐type equations for single‐variable chemical systems , 1980 .

[30]  S. Hameroff,et al.  Cellular automata in cytoskeletal lattices , 1984 .

[31]  R. Kapral,et al.  Internal Noise, Oscillations, Chaos and Chemical Waves , 1995 .

[32]  Louis E. Brus,et al.  Imaging and Time-Resolved Spectroscopy of Single Molecules at an Interface , 1996, Science.

[33]  Anna T. Lawniczak,et al.  Reactive lattice gas automata , 1991 .

[34]  G. Vichniac Simulating physics with cellular automata , 1984 .

[35]  Hiroshi Fujikawa,et al.  Fractal Growth of Bacillus subtilis on Agar Plates , 1989 .

[36]  Bastien Chopard,et al.  Cellular automata model for heat conduction in a fluid , 1988 .

[37]  L. Kadanoff,et al.  Bubble, bubble, boil, and trouble , 1994 .

[38]  M. F. Fuller,et al.  Practical Nonparametric Statistics; Nonparametric Statistical Inference , 1973 .

[39]  J. Schwartz,et al.  Theory of Self-Reproducing Automata , 1967 .

[40]  J. Tyson,et al.  A cellular automation model of excitable media including curvature and dispersion. , 1990, Science.

[41]  B. Hess,et al.  Isotropic cellular automaton for modelling excitable media , 1990, Nature.

[42]  E. A. Boucher Stochastic approach to reaction and physico-chemical kinetics , 1974 .