Coexisting infinitely many attractors in active band-pass filter-based memristive circuit

This paper presents an inductor-free memristive circuit, which is implemented by linearly coupling an active band-pass filter (BPF) with a parallel memristor and capacitor filter. Mathematical model is established, and numerical simulations are performed. The results verified by hardware experiments show that the active BPF-based memristive circuit exhibits the dynamical behaviors of point, period, chaos, and period-doubling bifurcation route. Most important of all, the newly proposed memristive circuit has a line equilibrium and its stability closely relies on memristor initial condition, which results in the emergence of extreme multistability. Stability distribution related to memristor initial condition is numerically estimated and the coexistence of infinitely many attractors is intuitively captured by numerical simulations and PSIM circuit simulations.

[1]  Bocheng Bao,et al.  Inductor-free simplified Chua’s circuit only using two-op-amp-based realization , 2016 .

[2]  S. K. Dana,et al.  Extreme multistability: Attractor manipulation and robustness. , 2015, Chaos.

[3]  Bocheng Bao,et al.  Dynamics of self-excited attractors and hidden attractors in generalized memristor-based Chua’s circuit , 2015 .

[4]  Leon O. Chua,et al.  The Fourth Element , 2012, Proceedings of the IEEE.

[5]  Bocheng Bao,et al.  Finding hidden attractors in improved memristor-based Chua''s circuit , 2015 .

[6]  Christos Volos,et al.  A novel memristive neural network with hidden attractors and its circuitry implementation , 2015, Science China Technological Sciences.

[7]  Julien Clinton Sprott,et al.  Multistability in symmetric chaotic systems , 2015 .

[8]  Zhong Liu,et al.  Generalized Memory Element and Chaotic Memory System , 2013, Int. J. Bifurc. Chaos.

[9]  Julien Clinton Sprott,et al.  Multistability in the Lorenz System: A Broken Butterfly , 2014, Int. J. Bifurc. Chaos.

[10]  Wang Guangyi,et al.  Dynamical Behaviors of a TiO2 Memristor Oscillator , 2013 .

[11]  Luigi Fortuna,et al.  A chaotic circuit based on Hewlett-Packard memristor. , 2012, Chaos.

[12]  Bocheng Bao,et al.  Extreme multistability in a memristive circuit , 2016 .

[13]  Sundarapandian Vaidyanathan,et al.  A Memristor-Based Hyperchaotic System with Hidden Attractors: Dynamics, Synchronization and Circuital Emulating , 2015 .

[14]  U. Feudel,et al.  Control of multistability , 2014 .

[15]  Bishnu Charan Sarkar,et al.  Single amplifier biquad based autonomous electronic oscillators for chaos generation , 2010 .

[16]  Leon O. Chua,et al.  Duality of memristor Circuits , 2013, Int. J. Bifurc. Chaos.

[17]  Nikolay V. Kuznetsov,et al.  Control of multistability in hidden attractors , 2015 .

[18]  Jacques Kengne,et al.  Coexistence of Chaos with Hyperchaos, Period-3 Doubling Bifurcation, and Transient Chaos in the Hyperchaotic Oscillator with Gyrators , 2015, Int. J. Bifurc. Chaos.

[19]  Xu Jianping,et al.  Dynamics analysis of chaotic circuit with two memristors , 2011 .

[20]  Huagan Wu,et al.  Chaotic and periodic bursting phenomena in a memristive Wien-bridge oscillator , 2016 .

[21]  Xu Jianping,et al.  Mapping equivalent approach to analysis and realization of memristor-based dynamical circuit , 2014 .

[22]  X. Jianping,et al.  Initial State Dependent Dynamical Behaviors in a Memristor Based Chaotic Circuit , 2010 .

[23]  R. E. Amritkar,et al.  Experimental observation of extreme multistability in an electronic system of two coupled Rössler oscillators. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Qiang Xu,et al.  A Simple memristor Chaotic Circuit with Complex Dynamics , 2011, Int. J. Bifurc. Chaos.

[25]  Qingdu Li,et al.  Hyperchaos in a 4D memristive circuit with infinitely many stable equilibria , 2015 .

[26]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[27]  M. Lakshmanan,et al.  Nonsmooth bifurcations, Transient Hyperchaos and hyperchaotic beats in a Memristive Murali-Lakshmanan-Chua Circuit , 2013, Int. J. Bifurc. Chaos.

[28]  Sergey P. Kuznetsov,et al.  Co-existing hidden attractors in a radio-physical oscillator system , 2015 .

[29]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[30]  Jun Ma,et al.  Collapse of Synchronization in a Memristive Network , 2015 .

[31]  Z. Njitacke Tabekoueng,et al.  Periodicity, chaos, and multiple attractors in a memristor-based Shinriki's circuit. , 2015, Chaos.

[32]  Saverio Morfu,et al.  On the use of multistability for image processing , 2007 .

[33]  Zhonglin Wang,et al.  A four-wing hyper-chaotic attractor generated from a 4-D memristive system with a line equilibrium , 2015 .

[34]  Huagan Wu,et al.  Complex transient dynamics in periodically forced memristive Chua’s circuit , 2015 .

[35]  B. Bao,et al.  Multistability in Chua's circuit with two stable node-foci. , 2016, Chaos.

[36]  Julien Clinton Sprott,et al.  Coexistence of Point, periodic and Strange attractors , 2013, Int. J. Bifurc. Chaos.

[37]  包伯成,et al.  Chaotic memristive circuit: equivalent circuit realization and dynamical analysis , 2011 .

[38]  Dongsheng Yu,et al.  Hyperchaos in a memristor-Based Modified Canonical Chua's Circuit , 2012, Int. J. Bifurc. Chaos.

[39]  Tanmoy Banerjee,et al.  Single amplifier biquad based inductor-free Chua’s circuit , 2012, 1210.8409.

[40]  Bharathwaj Muthuswamy,et al.  Implementing Memristor Based Chaotic Circuits , 2010, Int. J. Bifurc. Chaos.

[41]  Lili Zhou,et al.  Generating hyperchaotic multi-wing attractor in a 4D memristive circuit , 2016, Nonlinear Dynamics.

[42]  Fang Yuan,et al.  Dynamical Behaviors of a TiO2Memristor Oscillator , 2013 .

[43]  Bocheng Bao,et al.  Steady periodic memristor oscillator with transient chaotic behaviours , 2010 .

[44]  K Showalter,et al.  Uncertain destination dynamics. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[45]  Bocheng Bao,et al.  Multiple attractors in a non-ideal active voltage-controlled memristor based Chua's circuit , 2016 .

[46]  Ivo Petrás,et al.  Fractional-Order Memristor-Based Chua's Circuit , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.