The Physics of Eccentric Binary Black Hole Mergers. A Numerical Relativity Perspective

Gravitational wave observations of eccentric binary black hole mergers will provide unequivocal evidence for the formation of these systems through dynamical assembly in dense stellar environments. The study of these astrophysically motivated sources is timely in view of electromagnetic observations, consistent with the existence of stellar mass black holes in the globular cluster M22 and in the Galactic center, and the proven detection capabilities of ground-based gravitational wave detectors. In order to get insights into the physics of these objects in the dynamical, strong-field gravity regime, we present a catalog of 89 numerical relativity waveforms that describe binary systems of non-spinning black holes with mass-ratios $1\leq q \leq 10$, and initial eccentricities as high as $e_0=0.18$ fifteen cycles before merger. We use this catalog to quantify the loss of energy and angular momentum through gravitational radiation, and the astrophysical properties of the black hole remnant, including its final mass and spin, and recoil velocity. We discuss the implications of these results for gravitational wave source modeling, and the design of algorithms to search for and identify eccentric binary black hole mergers in realistic detection scenarios.

[1]  Stephen R. Taylor,et al.  Detection of eccentric supermassive black hole binaries with pulsar timing arrays: Signal-to-noise ratio calculations , 2015, 1504.00928.

[2]  Scott E. Field,et al.  Surrogate model of hybridized numerical relativity binary black hole waveforms , 2018, Physical Review D.

[3]  Jonathan R. Gair,et al.  Influence of conservative corrections on parameter estimation for extreme-mass-ratio inspirals , 2009 .

[4]  Johan Samsing,et al.  Double gravitational wave mergers , 2017, Monthly Notices of the Royal Astronomical Society.

[5]  S. Akcay,et al.  Spin–orbit precession for eccentric black hole binaries at first order in the mass ratio , 2016, 1608.04811.

[6]  B. A. Boom,et al.  A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart , 2018, The Astrophysical Journal.

[7]  B. F. Whiting,et al.  A Relativist's Toolkit, The Mathematics of Black-Hole Mechanics , 2004 .

[8]  A. L. Tiec,et al.  First Law of Mechanics for Compact Binaries on Eccentric Orbits , 2015, 1506.05648.

[9]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[10]  Bence Kocsis,et al.  Accuracy of Estimating Highly Eccentric Binary Black Hole Parameters with Gravitational-wave Detections , 2017, 1705.10781.

[11]  B. A. Boom,et al.  GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence , 2017, 1711.05578.

[12]  Hiroyuki Nakano,et al.  Hamiltonian formulation of the conservative self-force dynamics in the Kerr geometry , 2016, 1612.02504.

[13]  Y. Wang,et al.  Effects of waveform model systematics on the interpretation of GW150914 , 2017 .

[14]  E. Schnetter,et al.  Turduckening black holes: An Analytical and computational study , 2008, 0809.3533.

[15]  H. Grosser Chicago , 1906 .

[16]  Johan Samsing,et al.  Eccentric Black Hole Mergers Forming in Globular Clusters , 2017, 1711.07452.

[17]  S. Shapiro,et al.  On the numerical integration of Einstein's field equations , 1998, gr-qc/9810065.

[18]  Christian Reisswig,et al.  Energy versus angular momentum in black hole binaries. , 2011, Physical review letters.

[19]  Scott H. Hawley,et al.  Evolutions in 3D numerical relativity using fixed mesh refinement , 2003, gr-qc/0310042.

[20]  Ken-ichi Oohara,et al.  General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes , 1987 .

[21]  Johan Samsing,et al.  Black hole mergers from globular clusters observable by LISA II. Resolved eccentric sources and the gravitational wave background , 2018, Monthly Notices of the Royal Astronomical Society.

[22]  C J Moore,et al.  Fast methods for training Gaussian processes on large datasets , 2016, Royal Society Open Science.

[23]  E. A. Huerta,et al.  Python Open source Waveform ExtractoR (POWER): an open source, Python package to monitor and post-process numerical relativity simulations , 2017, ArXiv.

[24]  C. Evans,et al.  Lorenz gauge gravitational self-force calculations of eccentric binaries using a frequency domain procedure , 2014, 1409.4419.

[25]  Michael Boyle,et al.  Gravitational waveforms from spectral Einstein code simulations: Neutron star-neutron star and low-mass black hole-neutron star binaries , 2018, Physical Review D.

[26]  Frank Herrmann,et al.  Comparisons of eccentric binary black hole simulations with post-Newtonian models , 2008, 0806.1037.

[27]  Franz E. Bauer,et al.  A density cusp of quiescent X-ray binaries in the central parsec of the Galaxy , 2018, Nature.

[28]  Luc Blanchet,et al.  Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries , 2002, Living reviews in relativity.

[29]  Dae-Il Choi,et al.  Gravitational-wave extraction from an inspiraling configuration of merging black holes. , 2005, Physical review letters.

[30]  E. A. Huerta,et al.  Effect of eccentricity on binary neutron star searches in advanced LIGO , 2013, 1301.1895.

[31]  Vicky Kalogera,et al.  BLACK HOLE MERGERS AND BLUE STRAGGLERS FROM HIERARCHICAL TRIPLES FORMED IN GLOBULAR CLUSTERS , 2015, 1509.05080.

[32]  Michael Purrer,et al.  Statistical Gravitational Waveform Models: What to Simulate Next? , 2017, 1706.05408.

[33]  Frank Herrmann,et al.  Circularization and final spin in eccentric binary-black-hole inspirals , 2007, 0710.5167.

[34]  C. Ott,et al.  The Einstein Toolkit: a community computational infrastructure for relativistic astrophysics , 2011, 1111.3344.

[35]  B. A. Boom,et al.  GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.

[36]  Y. Zlochower,et al.  Accurate evolutions of orbiting black-hole binaries without excision. , 2006, Physical review letters.

[37]  Maarten van de Meent,et al.  Numerical computation of the effective-one-body potential q using self-force results , 2016 .

[38]  J. Prochaska,et al.  Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source , 2017, Science.

[39]  Marco Drago,et al.  Proposed search for the detection of gravitational waves from eccentric binary black holes , 2015, 1511.09240.

[40]  Johan Samsing,et al.  Black Hole Mergers From Globular Clusters Observable by LISA I: Eccentric Sources Originating From Relativistic N-body Dynamics , 2018, Monthly Notices of the Royal Astronomical Society.

[41]  Laura Chomiuk,et al.  Two stellar-mass black holes in the globular cluster M22 , 2012, Nature.

[42]  UCSC,et al.  Formation of Tidal Captures and Gravitational Wave Inspirals in Binary-single Interactions , 2016, 1609.09114.

[43]  Daniel E. Holz,et al.  Using Gravitational-Wave Standard Sirens , 2005, astro-ph/0504616.

[44]  Alessia Gualandris,et al.  Black hole growth through hierarchical black hole mergers in dense star clusters: implications for gravitational wave detections , 2018, Monthly Notices of the Royal Astronomical Society.

[45]  Donato Bini,et al.  Spin-orbit precession along eccentric orbits for extreme mass ratio black hole binaries and its effective-one-body transcription , 2017 .

[46]  Sarah Habib,et al.  Characterization of numerical relativity waveforms of eccentric binary black hole mergers , 2019, Physical Review D.

[47]  Shane L. Larson,et al.  Post-Newtonian dynamics in dense star clusters: Binary black holes in the LISA band , 2018, Physical Review D.

[48]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[49]  Bence Kocsis,et al.  RESONANT POST-NEWTONIAN ECCENTRICITY EXCITATION IN HIERARCHICAL THREE-BODY SYSTEMS , 2012, 1206.4316.

[50]  Bernd Eggers,et al.  Mass And Motion In General Relativity , 2016 .

[51]  Marcus Ansorg,et al.  Single-domain spectral method for black hole puncture data , 2004 .

[52]  Roland Haas,et al.  Eccentric, nonspinning, inspiral, Gaussian-process merger approximant for the detection and characterization of eccentric binary black hole mergers , 2017, 1711.06276.

[53]  Bence Kocsis,et al.  Black Hole Mergers in Galactic Nuclei Induced by the Eccentric Kozai–Lidov Effect , 2017, 1706.09896.

[54]  Enrico Ramirez-Ruiz,et al.  Tidal Disruptions of Stars by Binary Black Holes: Modifying the Spin Magnitudes and Directions of LIGO Sources in Dense Stellar Environments , 2018, The Astrophysical Journal.

[55]  Maarten van de Meent,et al.  Gravitational self-force on eccentric equatorial orbits around a Kerr black hole , 2016, 1606.06297.

[56]  Bence Kocsis,et al.  Measurement Accuracy of Inspiraling Eccentric Neutron Star and Black Hole Binaries Using Gravitational Waves , 2018, The Astrophysical Journal.

[57]  Hiroyuki Nakano,et al.  Post-Newtonian quasicircular initial orbits for numerical relativity , 2017, 1702.00872.

[58]  Nakamura,et al.  Evolution of three-dimensional gravitational waves: Harmonic slicing case. , 1995, Physical review. D, Particles and fields.

[59]  G. Mitselmakher,et al.  Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors , 2015, 1511.05999.

[60]  Texas Tech University,et al.  Multi-messenger observations of a binary neutron star merger , 2017 .

[61]  Y. Wang,et al.  Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence , 2016, 1606.01262.

[62]  Bence Kocsis,et al.  Eccentric Black Hole Gravitational-wave Capture Sources in Galactic Nuclei: Distribution of Binary Parameters , 2017, The Astrophysical Journal.

[63]  Erik Schnetter,et al.  Recoil velocities from equal-mass binary-black-hole mergers. , 2007, Physical review letters.

[64]  Lawrence E. Kidder,et al.  Complete waveform model for compact binaries on eccentric orbits , 2016, 1609.05933.

[65]  Jonathan Thornburg,et al.  A Fast Apparent‐Horizon Finder for 3‐Dimensional Cartesian Grids in Numerical Relativity , 2003, gr-qc/0306056.

[66]  Charles R. Evans,et al.  Evolution of small-mass-ratio binaries with a spinning secondary , 2017, 1708.03720.

[67]  Bernard J. Kelly,et al.  Mergers of non-spinning black-hole binaries: Gravitational radiation characteristics , 2008, 0805.1428.

[68]  Norman Murray,et al.  BLACK HOLE TRIPLE DYNAMICS: A BREAKDOWN OF THE ORBIT AVERAGE APPROXIMATION AND IMPLICATIONS FOR GRAVITATIONAL WAVE DETECTIONS , 2013, 1308.3674.

[69]  Jonathan R. Gair,et al.  Improving gravitational-wave parameter estimation using Gaussian process regression , 2015, 1509.04066.

[70]  B. A. Boom,et al.  GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.

[71]  Alberto J. Castro-Tirado,et al.  Multi-messenger Observations of a Binary Neutron Star , 2017 .

[72]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[73]  Johan Samsing,et al.  Topology of black hole binary–single interactions , 2017, 1706.04672.

[74]  E. Huerta,et al.  Fusing numerical relativity and deep learning to detect higher-order multipole waveforms from eccentric binary black hole mergers , 2018, Physical Review D.

[75]  Maarten van de Meent,et al.  Gravitational self-force on generic bound geodesics in Kerr spacetime , 2017, 1711.09607.

[76]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[77]  C. Stivers Class , 2010 .

[78]  Michael Boyle,et al.  Parameter Estimation Method that Directly Compares Gravitational Wave Observations to Numerical Relativity , 2017, 1705.09833.

[79]  Bence Kocsis,et al.  Parameter estimation for inspiraling eccentric compact binaries including pericenter precession , 2012, 1206.5786.

[80]  Carlos O. Lousto,et al.  The RIT binary black hole simulations catalog , 2017, 1703.03423.

[81]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[82]  Erik Schnetter,et al.  High accuracy binary black hole simulations with an extended wave zone , 2009, 0910.3803.

[83]  Johan Samsing,et al.  Implementing tidal and gravitational wave energy losses in few-body codes: A fast and easy drag force model , 2018, Monthly Notices of the Royal Astronomical Society.

[84]  Erik Schnetter,et al.  Optimized High-Order Derivative and Dissipation Operators Satisfying Summation by Parts, and Applications in Three-dimensional Multi-block Evolutions , 2005, J. Sci. Comput..

[85]  D. Radice,et al.  Characterizing the Gravitational Wave Signal from Core-collapse Supernovae , 2018, The Astrophysical Journal.

[86]  Donato Bini,et al.  Spin-orbit precession along eccentric orbits: Improving the knowledge of self-force corrections and of their effective-one-body counterparts , 2018 .

[87]  Hiroyuki Nakano,et al.  Eccentric binary black holes with spin via the direct integration of the post-Newtonian equations of motion , 2019, Physical Review D.

[88]  B. Szilágyi,et al.  Characteristic extraction in numerical relativity: binary black hole merger waveforms at null infinity , 2009, 0912.1285.

[89]  Luciano Rezzolla,et al.  THE FINAL SPIN FROM BINARY BLACK HOLES IN QUASI-CIRCULAR ORBITS , 2016, 1605.01938.

[90]  Donato Bini,et al.  New gravitational self-force analytical results for eccentric orbits around a Schwarzschild black hole , 2016 .

[91]  Aaron M. Geller,et al.  On the rate of black hole binary mergers in galactic nuclei due to dynamical hardening , 2017, 1711.10494.

[92]  Daniel George,et al.  Deep Neural Networks to Enable Real-time Multimessenger Astrophysics , 2016, ArXiv.

[93]  Harald P. Pfeiffer,et al.  Eccentric binary black hole inspiral-merger-ringdown gravitational waveform model from numerical relativity and post-Newtonian theory , 2017, Physical Review D.

[94]  Y. Zlochower,et al.  Nonlinear gravitational recoil from the mergers of precessing black-hole binaries , 2012, 1211.7099.

[95]  Michael Zevin,et al.  Post-Newtonian dynamics in dense star clusters: Formation, masses, and merger rates of highly-eccentric black hole binaries , 2018, Physical Review D.

[96]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[97]  Bence Kocsis,et al.  Isotropic–Nematic Phase Transitions in Gravitational Systems. II. Higher Order Multipoles , 2017, 1712.04449.

[98]  Donato Bini,et al.  High post-Newtonian order gravitational self-force analytical results for eccentric equatorial orbits around a Kerr black hole , 2016 .

[99]  Wen-Biao Han,et al.  Waveform model for an eccentric binary black hole based on the effective-one-body-numerical-relativity formalism , 2017, 1708.00166.

[100]  Scott E. Field,et al.  Fast and accurate prediction of numerical relativity waveforms from binary black hole mergers using surrogate models , 2015, Physical review letters.

[101]  Lisa Randall,et al.  Induced Ellipticity for Inspiraling Binary Systems , 2017 .

[102]  Christiane Lechner,et al.  Kranc: a Mathematica package to generate numerical codes for tensorial evolution equations , 2006, Comput. Phys. Commun..

[103]  Jarrod R. Hurley,et al.  Multiple stellar-mass black holes in globular clusters: theoretical confirmation , 2012, 1211.6608.

[104]  Johan Samsing,et al.  How post-Newtonian dynamics shape the distribution of stationary binary black hole LISA sources in nearby globular clusters , 2018, Physical Review D.

[105]  W. Marsden I and J , 2012 .

[106]  Richard O'Shaughnessy,et al.  Accurate and efficient waveforms for compact binaries on eccentric orbits , 2014, 1408.3406.

[107]  Lisa Randall,et al.  An Analytical Portrait of Binary Mergers in Hierarchical Triple Systems , 2018, The Astrophysical Journal.

[108]  Olaf Dreyer,et al.  Introduction to isolated horizons in numerical relativity , 2003 .

[109]  Niels Warburton,et al.  Fast self-forced inspirals , 2018, Classical and Quantum Gravity.

[110]  Tanja Hinderer,et al.  Foundations of an effective-one-body model for coalescing binaries on eccentric orbits , 2017, 1707.08426.

[111]  J. K. Blackburn,et al.  A gravitational-wave standard siren measurement of the Hubble constant , 2017, Nature.

[112]  Enrico Ramirez-Ruiz,et al.  Dissipative Evolution of Unequal-mass Binary–single Interactions and Its Relevance to Gravitational-wave Detections , 2017, 1706.03776.

[113]  Michael Boyle,et al.  On the accuracy and precision of numerical waveforms: effect of waveform extraction methodology , 2015, 1512.06800.

[114]  Michael Boyle,et al.  Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors , 2016, 1611.03703.

[115]  Michael Boyle,et al.  Accuracy of binary black hole waveform models for aligned-spin binaries , 2016, 1601.05396.

[116]  Donato Bini,et al.  Confirming and improving post-Newtonian and effective-one-body results from self-force computations along eccentric orbits around a Schwarzschild black hole , 2015, 1511.04533.

[117]  M. Ansorg,et al.  Eccentric binary black-hole mergers: The transition from inspiral to plunge in general relativity , 2007, 0710.3823.

[118]  Enrico Ramirez-Ruiz,et al.  Eccentric Black Hole Mergers in Dense Star Clusters: The Role of Binary–Binary Encounters , 2018, The Astrophysical Journal.

[119]  Mirek Giersz,et al.  MOCCA-SURVEY Database. I. Eccentric Black Hole Mergers during Binary–Single Interactions in Globular Clusters , 2017, 1712.06186.

[120]  David Blair,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017, 1710.05834.

[121]  Michael Boyle,et al.  Catalog of 174 binary black hole simulations for gravitational wave astronomy. , 2013, Physical review letters.

[122]  Frederic A. Rasio,et al.  MERGING BLACK HOLE BINARIES IN GALACTIC NUCLEI: IMPLICATIONS FOR ADVANCED-LIGO DETECTIONS , 2016, 1606.04889.

[123]  Daniel George,et al.  Deep Learning for Real-time Gravitational Wave Detection and Parameter Estimation with Advanced LIGO Data , 2017, ArXiv.

[124]  Maarten van de Meent,et al.  Self-Force Corrections to the Periapsis Advance around a Spinning Black Hole. , 2016, 1610.03497.

[125]  Donato Bini,et al.  Gravitational self-force corrections to tidal invariants for particles on eccentric orbits in a Schwarzschild spacetime , 2018, Physical Review D.

[126]  Enrico Ramirez-Ruiz,et al.  THE FORMATION OF ECCENTRIC COMPACT BINARY INSPIRALS AND THE ROLE OF GRAVITATIONAL WAVE EMISSION IN BINARY–SINGLE STELLAR ENCOUNTERS , 2013, 1308.2964.

[127]  B. A. Boom,et al.  Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817 , 2017, 1710.05836.

[128]  Erik Schnetter,et al.  Recoil velocities from equal-mass binary-black-hole mergers. , 2007 .

[129]  Karan Jani,et al.  Georgia tech catalog of gravitational waveforms , 2016, 1605.03204.

[130]  Kei Kotake,et al.  Multiple physical elements to determine the gravitational-wave signatures of core-collapse supernovae , 2011, 1110.5107.

[131]  Enrico Ramirez-Ruiz,et al.  On the Assembly Rate of Highly Eccentric Binary Black Hole Mergers , 2017, 1703.09703.

[132]  B. Schutz Determining the Hubble constant from gravitational wave observations , 1986, Nature.