Rice husk: A mild, efficient, green and recyclable catalyst for the synthesis of 12-Aryl-8, 9, 10, 12-tetrahydro [a] xanthene-11-ones and quinoxaline derivatives

[1]  P. Stefani,et al.  NANOCELLULOSE FROM RICE HUSK FOLLOWING ALKALINE TREATMENT TO REMOVE SILICA , 2011 .

[2]  N. Karimi,et al.  Caro's Acid–Silica Gel–Catalyzed One-Pot Synthesis of 12-Aryl-8,9,10,12-tetrahydrobenzo[a] Xanthen-11-ones , 2010 .

[3]  R. Ghorbani‐Vaghei,et al.  Facile One-Pot Synthesis of Tetrahydrobenzo[a]xanthene-11-one and Aryl-14H-dibenzo[a.j]xanthene , 2010 .

[4]  M. Swaminathan,et al.  An efficient protocol for the green synthesis of quinoxaline and dipyridophenazine derivatives at room temperature using sulfated titania , 2010 .

[5]  W. Su,et al.  A new strategy for the synthesis of benzoxanthenes catalyzed by proline triflate in water , 2010 .

[6]  H. Zhan,et al.  Synthesis of quinoxaline derivatives catalyzed by PEG-400 , 2010 .

[7]  Honglin Chen,et al.  One-Pot, Three-Component Condensation of Aldehydes, 2-Naphthol and 1,3-Dicarbonyl Compounds , 2010 .

[8]  A. Mamun,et al.  Physical, chemical and surface properties of wheat husk, rye husk and soft wood and their polypropylene composites , 2010 .

[9]  Atul Kumar,et al.  Diversity oriented synthesis of benzoxanthene and benzochromene libraries via one-pot, three-component reactions and their anti-proliferative activity. , 2010, Journal of combinatorial chemistry.

[10]  Hong-juan Wang,et al.  A facile and efficient method for synthesis of xanthone derivatives catalyzed by HBF4/SiO2 under solvent-free conditions , 2009 .

[11]  G. Nandi,et al.  An efficient one-pot synthesis of tetrahydrobenzo[a]xanthene-11-one and diazabenzo[a]anthracene-9,11-dione derivatives under solvent free condition , 2009 .

[12]  J. Khurana,et al.  pTSA-catalyzed one-pot synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-ones in ionic liquid and neat conditions , 2009 .

[13]  S. Bertolotti,et al.  Xanthene dyes/amine as photoinitiators of radical polymerization: A comparative and photochemical study in aqueous medium , 2009 .

[14]  Li-Feng Zhang,et al.  Iodine-Catalyzed Synthesis of 12-Aryl-8,9,10,12-tetrahydro-benzo[a]xanthen-11-one Derivatives via Multicomponent Reaction , 2009 .

[15]  Yazhou Zhang,et al.  Photoprocesses of Xanthene Dyes Bound to Lysozyme or Serum Albumin , 2009, Photochemistry and photobiology.

[16]  K. Niknam,et al.  Silica Bonded S-Sulfonic Acid: A Recyclable Catalyst for the Synthesis of Quinoxalines at Room Temperature , 2009, Molecules.

[17]  J. Putaux,et al.  Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. , 2009 .

[18]  Francisco M. Muñiz,et al.  Daxabe -A Xanthene-Based Fluorescent Sensor for 3,5-Dinitrobenzoic Acid and Anions , 2009 .

[19]  R. Strongin,et al.  Optimising the synthesis and red–green–blue emission of a simple organic dye , 2009, Supramolecular chemistry.

[20]  Hong-juan Wang,et al.  Synthesis 12-Aryl or 12-Alkyl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-one derivatives catalyzed by dodecatungstophosphoric acid , 2009 .

[21]  Huile Jin,et al.  An efficient catalyst-free protocol for the synthesis of quinoxaline derivatives under ultrasound irradiation , 2009 .

[22]  W. Su,et al.  Strontium triflate catalyzed one-pot condensation of β-naphthol, aldehydes and cyclic 1,3-dicarbonyl compounds , 2008 .

[23]  M. Zolfigol,et al.  Metal Hydrogen Sulfates M(HSO4)n: As Efficient Catalysts for the Synthesis of Quinoxalines in EtOH at Room Temperature , 2008 .

[24]  Sabu Thomas,et al.  A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization. , 2008, Journal of agricultural and food chemistry.

[25]  A. Zare,et al.  Oxalic acid as an efficient, cheap, and reusable catalyst for the preparation of quinoxalines via condensation of 1,2-diamines with α-diketones at room temperature , 2008 .

[26]  K. Krishnani,et al.  Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. , 2008, Journal of hazardous materials.

[27]  Yufang Xu,et al.  Novel nitroheterocyclic hypoxic markers for solid tumor: synthesis and biological evaluation. , 2008, Bioorganic & medicinal chemistry.

[28]  Paul A Wender,et al.  Function-oriented synthesis, step economy, and drug design. , 2008, Accounts of chemical research.

[29]  M. Krishnaiah,et al.  An Efficient and Convenient Protocol for the Synthesis of Novel 12-Aryl- or 12-Alkyl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-one Derivatives , 2007 .

[30]  M. Heravi,et al.  An Efficient and Facile Synthesis of Quinoxaline Derivatives Catalyzed by KHSO4 at Room Temperature , 2007 .

[31]  Paul T. Anastas,et al.  Introduction: Green chemistry , 2007 .

[32]  Paul T Anastas,et al.  Innovations and green chemistry. , 2007, Chemical reviews.

[33]  M. A. Hamad Thermal Characteristics of Rice Hulls , 2007 .

[34]  F. Bamoharram,et al.  Wells-Dawson Type Heteropolyacid Catalyzed Synthesis of Quinoxaline Derivatives at Room Temperature , 2007 .

[35]  H. R. Darabi,et al.  A RECYCLABLE AND HIGHLY EFFECTIVE SULFAMIC ACID/MEOH CATALYTIC SYSTEM FOR THE SYNTHESIS OF QUINOXALINES AT ROOM TEMPERATURE , 2007 .

[36]  F. Shirini,et al.  Silica triflate as an efficient catalyst for the solvent-free synthesis of 3,4-dihydropyrimidin-2(1H)-ones , 2007 .

[37]  M. Heravi,et al.  On Water: A practical and efficient synthesis of quinoxaline derivatives catalyzed by CuSO4 · 5H2O , 2007 .

[38]  C. Yao,et al.  Cerium (IV) ammonium nitrate (CAN) as a catalyst in tap water: A simple, proficient and green approach for the synthesis of quinoxalines , 2006 .

[39]  M. Heravi,et al.  Facile synthesis of quinoxaline derivatives using o-iodoxybenzoic acid (IBX) at room temperature , 2006 .

[40]  M. Zolfigol,et al.  Silica Sulfuric Acid and Silica Chloride as Efficient Reagents for Organic Reactions , 2006 .

[41]  J. Desrivot,et al.  Synthesis and antiprotozoal activity of some new synthetic substituted quinoxalines. , 2006, Bioorganic & medicinal chemistry letters.

[42]  R. Bhosale,et al.  An efficient protocol for the synthesis of quinoxaline derivatives at room temperature using molecular iodine as the catalyst , 2005 .

[43]  Zhijian Zhao,et al.  Allosteric Akt (PKB) inhibitors: discovery and SAR of isozyme selective inhibitors. , 2005, Bioorganic & medicinal chemistry letters.

[44]  R. Sun,et al.  Characteristics of degraded cellulose obtained from steam-exploded wheat straw. , 2005, Carbohydrate research.

[45]  H. Tian,et al.  Ytterbium Triflate Catalyzed Heterocyclization of 1,2‐Phenylenediamines and Alkyl Oxalates Under Solvent‐Free Conditions via Phillips Reaction: A Facile Synthesis of Quinoxaline‐2,3‐diones Derivatives , 2004 .

[46]  S. Bräse,et al.  A short, atom-economical entry to tetrahydroxanthenones. , 2004, Angewandte Chemie.

[47]  Gang Zhao,et al.  Quinoxaline excision: a novel approach to tri- and diquinoxaline cavitands. , 2004, Organic Letters.

[48]  Yong Hae Kim,et al.  Synthesis and biological activity of new quinoxaline antibiotics of echinomycin analogues. , 2004, Bioorganic & medicinal chemistry letters.

[49]  M. Myers,et al.  Potent quinoxaline-based inhibitors of PDGF receptor tyrosine kinase activity. Part 2: the synthesis and biological activities of RPR127963 an orally bioavailable inhibitor. , 2003, Bioorganic & medicinal chemistry letters.

[50]  R. Reynolds,et al.  Synthesis and antimycobacterial activity of pyrazine and quinoxaline derivatives. , 2002, Journal of medicinal chemistry.

[51]  V. Lynch,et al.  Quinoxaline-bridged porphyrinoids. , 2002, Journal of the American Chemical Society.

[52]  K. Veijonen,et al.  Combustion behaviour of rice husk in a bubbling fluidised bed , 2002 .

[53]  N. Yalçın,et al.  Studies on silica obtained from rice husk , 2001 .

[54]  I. Sage,et al.  Synthesis and device characterisation of side-chain polymer electron transport materials for organic semiconductor applications , 2001 .

[55]  M. Ismail,et al.  Synthesis and Antimicrobial Activities of Some Novel Quinoxalinone Derivatives , 2000 .

[56]  A. E. Ghaly,et al.  Thermal degradation of rice husks in nitrogen atmosphere , 1998 .

[57]  R. Zein,et al.  The Use of Rice Husk for Removal of Toxic Metals from Waste Water , 1997 .

[58]  S. Piras,et al.  Quinoxaline chemistry. Part 7. 2-[aminobenzoates]- and 2-[aminobenzoylglutamate]-quinoxalines as classical antifolate agents. Synthesis and evaluation of in vitro anticancer, anti-HIV and antifungal activity. , 1997, Farmaco.

[59]  I. A. Rahman,et al.  Effect of nitric acid digestion on organic materials and silica in rice husk , 1997 .

[60]  Donal D. C. Bradley,et al.  Use of poly(phenyl quinoxaline) as an electron transport material in polymer light‐emitting diodes , 1996 .

[61]  Alan R. Katritzky,et al.  Comprehensive Heterocyclic Chemistry IV , 1996 .

[62]  G. Socrates,et al.  Infrared characteristic group frequencies : tables and charts , 1994 .

[63]  R. G. Browne,et al.  4-Amino[1,2,4]triazolo[4,3-a]quinoxalines. A novel class of potent adenosine receptor antagonists and potential rapid-onset antidepressants. , 1990, Journal of medicinal chemistry.

[64]  R. Uenishi,et al.  The use of dyestuff-treated rice hulls for removal of heavy metals from waste water , 1986 .

[65]  M. Patel Application of scanning electron microscopy in the analysis of the 2:1 group of clay minerals: Vermiculite , 1981 .

[66]  M. A. Hamad Thermal characteristics of rice hulls: Thermal characteristics of rice hulls , 1981 .