An all-Mach consistent numerical scheme for simulation of compressible multi-component fluids including surface tension, cavitation, turbulence modeling and interface sharpening on compact stencils

[1]  F. Xiao,et al.  An accurate and efficient multiphase solver based on THINC scheme and adaptive mesh refinement , 2023, International Journal of Multiphase Flow.

[2]  X. Deng A unified framework for non-linear reconstruction schemes in a compact stencil. Part 1: Beyond second order , 2023, J. Comput. Phys..

[3]  N. Adams,et al.  A parallel modular computing environment for three-dimensional multiresolution simulations of compressible flows , 2022, Computer Methods in Applied Mechanics and Engineering.

[4]  M. Skote,et al.  High-order methods for diffuse-interface models in compressible multi-medium flows: A review , 2022, Physics of Fluids.

[5]  Nikolaus A. Adams,et al.  ALPACA - A Level-set based Sharp-interface Multiresolution Solver for Conservation Laws , 2021, Computer Physics Communications.

[6]  D. Jarrahbashi,et al.  Numerical study of the transcritical shock-droplet interaction , 2021, Physical Review Fluids.

[7]  Feng Xiao,et al.  THINC scaling method that bridges VOF and level set schemes , 2021, J. Comput. Phys..

[8]  N. Adams,et al.  Large eddy simulations of cavitating flow in a step nozzle with injection into gas , 2021, 2103.00570.

[9]  T. Yonomoto,et al.  Numerical Study on an Interface Compression Method for the Volume of Fluid Approach , 2021, Fluids.

[10]  L. Pickett,et al.  High pressure/high temperature multiphase simulations of dodecane injection to nitrogen: Application on ECN Spray-A , 2020 .

[11]  P. Boivin,et al.  Diffuse interface modelling of reactive multi-phase flows applied to a sub-critical cryogenic jet , 2020 .

[12]  Feng Xiao,et al.  Constructing higher order discontinuity-capturing schemes with upwind-biased interpolations and boundary variation diminishing algorithm , 2020 .

[13]  H. S. Udaykumar,et al.  A sharp-interface method for the simulation of shock-induced vaporization of droplets , 2020, J. Comput. Phys..

[14]  N. Adams,et al.  Investigation of condensation shocks and re-entrant jet dynamics in a cavitating nozzle flow by Large-Eddy Simulation , 2020, 2001.03145.

[15]  Spencer H. Bryngelson,et al.  Near-surface dynamics of a gas bubble collapsing above a crevice , 2019, Journal of Fluid Mechanics.

[16]  Parviz Moin,et al.  A conservative diffuse-interface method for compressible two-phase flows , 2019, J. Comput. Phys..

[17]  Kong Ling,et al.  A coupled volume-of-fluid and level-set method (VOSET) for capturing interface of two-phase flows in arbitrary polygon grid , 2019, International Journal of Heat and Mass Transfer.

[18]  Thomas Masser,et al.  Modeling surface tension in compressible flow on an adaptively refined mesh , 2019, Comput. Math. Appl..

[19]  Feng Xiao,et al.  A fifth-order shock capturing scheme with two-stage boundary variation diminishing algorithm , 2019, J. Comput. Phys..

[20]  Wei Shyy,et al.  Compact higher-order gas-kinetic schemes with spectral-like resolution for compressible flow simulations , 2019, Advances in Aerodynamics.

[21]  Feng Xiao,et al.  High fidelity discontinuity-resolving reconstruction for compressible multiphase flows with moving interfaces , 2018, J. Comput. Phys..

[22]  J. Matheis,et al.  Multi-component vapor-liquid equilibrium model for LES of high-pressure fuel injection and application to ECN Spray A , 2018 .

[23]  Feng Xiao,et al.  Coupled THINC and level set method: A conservative interface capturing scheme with high-order surface representations , 2018, J. Comput. Phys..

[24]  Carlos Pantano,et al.  Diffuse-Interface Capturing Methods for Compressible Two-Phase Flows , 2018 .

[25]  Shuanghu Wang,et al.  A new class of high-order weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 2017 .

[26]  Feng Xiao,et al.  Toward efficient and accurate interface capturing on arbitrary hybrid unstructured grids: The THINC method with quadratic surface representation and Gaussian quadrature , 2017, J. Comput. Phys..

[27]  Jonathan D. Regele,et al.  An interface capturing scheme for modeling atomization in compressible flows , 2017, J. Comput. Phys..

[28]  Bing Wang,et al.  An incremental-stencil WENO reconstruction for simulation of compressible two-phase flows , 2017, International Journal of Multiphase Flow.

[29]  Jonathan D. Regele,et al.  A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension , 2017, J. Comput. Phys..

[30]  R. Saurel,et al.  A simple and fast phase transition relaxation solver for compressible multicomponent two-phase flows , 2017 .

[31]  Nicolas Favrie,et al.  A model and numerical method for compressible flows with capillary effects , 2017, J. Comput. Phys..

[32]  Feng Xiao,et al.  An unstructured-grid numerical model for interfacial multiphase fluids based on multi-moment finite volume formulation and THINC method , 2017 .

[33]  N. Adams,et al.  Large-Eddy Simulation of turbulent, cavitating fuel flow inside a 9-hole Diesel injector including needle movement , 2017 .

[34]  N. Adams,et al.  Shock Mach number influence on reaction wave types and mixing in reactive shock–bubble interaction , 2016 .

[35]  Nikolaus A. Adams,et al.  Efficient implicit LES method for the simulation of turbulent cavitating flows , 2016, J. Comput. Phys..

[36]  Richard Saurel,et al.  The Noble-Abel Stiffened-Gas equation of state , 2016 .

[37]  Feng Xiao,et al.  Boundary Variation Diminishing (BVD) reconstruction: A new approach to improve Godunov schemes , 2016, J. Comput. Phys..

[38]  Hrvoje Jasak,et al.  A computational method for sharp interface advection , 2016, Royal Society Open Science.

[39]  Nikolaus A. Adams,et al.  Large-eddy simulation of cavitating nozzle flow and primary jet break-up , 2015 .

[40]  Stefan Turek,et al.  Evaluation of commercial and academic CFD codes for a two-phase flow benchmark test case , 2015, Int. J. Comput. Sci. Eng..

[41]  Feng Xiao,et al.  An efficient and accurate algebraic interface capturing method for unstructured grids in 2 and 3 dimensions: The THINC method with quadratic surface representation , 2014 .

[42]  Ratnesh K. Shukla,et al.  Nonlinear preconditioning for efficient and accurate interface capturing in simulation of multicomponent compressible flows , 2014, J. Comput. Phys..

[43]  Stefan Hickel,et al.  Subgrid-scale modeling for implicit large eddy simulation of compressible flows and shock-turbulence interaction , 2014 .

[44]  Nikolaus A. Adams,et al.  Large-eddy simulation of turbulent cavitating flow in a micro channel , 2014 .

[45]  Feng Xiao,et al.  An Eulerian interface sharpening algorithm for compressible two-phase flow: The algebraic THINC approach , 2014, J. Comput. Phys..

[46]  Keiichi Kitamura,et al.  A simple interface sharpening technique with a hyperbolic tangent function applied to compressible two-fluid modeling , 2014, J. Comput. Phys..

[47]  Ali Q. Raeini,et al.  Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method , 2012, J. Comput. Phys..

[48]  Eric Johnsen,et al.  Preventing numerical errors generated by interface-capturing schemes in compressible multi-material flows , 2012, J. Comput. Phys..

[49]  Nikolaus A. Adams,et al.  Anti-diffusion interface sharpening technique for two-phase compressible flow simulations , 2012, J. Comput. Phys..

[50]  Feng Xiao,et al.  An interface capturing method with a continuous function: The THINC method with multi-dimensional reconstruction , 2012, J. Comput. Phys..

[51]  Feng Xiao,et al.  Revisit to the THINC scheme: A simple algebraic VOF algorithm , 2011, J. Comput. Phys..

[52]  Nikolaus A. Adams,et al.  Anti-diffusion method for interface steepening in two-phase incompressible flow , 2011, J. Comput. Phys..

[53]  J. Freund,et al.  An interface capturing method for the simulation of multi-phase compressible flows , 2010, J. Comput. Phys..

[54]  Eleuterio F. Toro,et al.  HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow , 2010, J. Comput. Phys..

[55]  Markus Bussmann,et al.  Height functions for applying contact angles to 3D VOF simulations , 2009 .

[56]  Jack R. Edwards,et al.  An investigation of interface-sharpening schemes for multi-phase mixture flows , 2009, J. Comput. Phys..

[57]  D. Kuzmin,et al.  Quantitative benchmark computations of two‐dimensional bubble dynamics , 2009 .

[58]  Richard Saurel,et al.  Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures , 2009, J. Comput. Phys..

[59]  S. Schmidt,et al.  Riemann Techniques for the Simulation of Compressible Liquid Flows with Phase-Transistion at all Mach Numbers - Shock and Wave Dynamics in Cavitating 3-D Micro and Macro Systems , 2008 .

[60]  Nikolaus A. Adams,et al.  On implicit subgrid-scale modeling in wall-bounded flows , 2007 .

[61]  Kensuke Yokoi,et al.  Efficient implementation of THINC scheme: A simple and practical smoothed VOF algorithm , 2007, J. Comput. Phys..

[62]  Nikolaus A. Adams,et al.  Implicit subgrid-scale modeling for large-eddy simulation of passive-scalar mixing , 2007 .

[63]  Matthew W. Williams,et al.  A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework , 2006, J. Comput. Phys..

[64]  E. Toro,et al.  A Riemann solver and upwind methods for a two‐phase flow model in non‐conservative form , 2006 .

[65]  Nikolaus A. Adams,et al.  An adaptive local deconvolution method for implicit LES , 2005, J. Comput. Phys..

[66]  Gunilla Kreiss,et al.  A conservative level set method for two phase flow II , 2005, J. Comput. Phys..

[67]  Eric Johnsen,et al.  Implementation of WENO schemes in compressible multicomponent flow problems , 2005, J. Comput. Phys..

[68]  Richard Saurel,et al.  A compressible flow model with capillary effects , 2005 .

[69]  Feng Xiao,et al.  A simple algebraic interface capturing scheme using hyperbolic tangent function , 2005 .

[70]  Junseok Kim,et al.  A continuous surface tension force formulation for diffuse-interface models , 2005 .

[71]  S. Cummins,et al.  Estimating curvature from volume fractions , 2005 .

[72]  N. Adams,et al.  Implicit subgrid-scale modeling by adaptive deconvolution , 2004 .

[73]  G. Warnecke,et al.  The Riemann problem for the Baer-Nunziato two-phase flow model , 2004 .

[74]  O. Metayer,et al.  Élaboration des lois d'état d'un liquide et de sa vapeur pour les modèles d'écoulements diphasiques Elaborating equations of state of a liquid and its vapor for two-phase flow models , 2004 .

[75]  J. Sethian,et al.  LEVEL SET METHODS FOR FLUID INTERFACES , 2003 .

[76]  M. Sussman A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles , 2003 .

[77]  P. Mulet,et al.  A flux-split algorithm applied to conservative models for multicomponent compressible flows , 2003 .

[78]  M. Renardy,et al.  PROST: a parabolic reconstruction of surface tension for the volume-of-fluid method , 2002 .

[79]  Grégoire Allaire,et al.  A five-equation model for the simulation of interfaces between compressible fluids , 2002 .

[80]  D. Stewart,et al.  Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations , 2001 .

[81]  Rémi Abgrall,et al.  Computations of compressible multifluids , 2001 .

[82]  Ronald Fedkiw,et al.  A Boundary Condition Capturing Method for Multiphase Incompressible Flow , 2000, J. Sci. Comput..

[83]  D. Jacqmin Regular Article: Calculation of Two-Phase Navier–Stokes Flows Using Phase-Field Modeling , 1999 .

[84]  R. I. Issa,et al.  A Method for Capturing Sharp Fluid Interfaces on Arbitrary Meshes , 1999 .

[85]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[86]  S. Zaleski,et al.  Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows , 1999 .

[87]  F. Nicoud,et al.  Large-Eddy Simulation of the Shock/Turbulence Interaction , 1999 .

[88]  R. Abgrall,et al.  A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows , 1999 .

[89]  D. Stewart,et al.  Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues , 1999 .

[90]  Keh-Ming Shyue,et al.  An Efficient Shock-Capturing Algorithm for Compressible Multicomponent Problems , 1998 .

[91]  Josette Bellan,et al.  Efficient High-Pressure State Equations , 1997 .

[92]  Gerhart Eigenberger,et al.  Dynamic Numerical Simulation of Gas-Liquid Two Phase Flows, Euler-Euler versus Euler-Lagrange , 1997 .

[93]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[94]  R. Abgrall How to Prevent Pressure Oscillations in Multicomponent Flow Calculations , 1996 .

[95]  R. Chella,et al.  Mixing of a two-phase fluid by cavity flow. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[96]  Balasubramanya T. Nadiga,et al.  Investigations of a Two-Phase Fluid Model , 1995, comp-gas/9511003.

[97]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[98]  James J. Quirk,et al.  On the dynamics of a shock–bubble interaction , 1994, Journal of Fluid Mechanics.

[99]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[100]  S. Zaleski,et al.  Modelling Merging and Fragmentation in Multiphase Flows with SURFER , 1994 .

[101]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[102]  B. Larrouturou How to preserve the mass fractions positivity when computing compressible multi-component flows , 1991 .

[103]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[104]  Elaine S. Oran,et al.  Surface tension and viscosity with Lagrangian hydrodynamics on a triangular mesh. Memorandum report , 1988 .

[105]  M. Baer,et al.  A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials , 1986 .

[106]  Oliver A. McBryan,et al.  Front Tracking for Gas Dynamics , 1984 .

[107]  G. D. van Albada,et al.  A comparative study of computational methods in cosmic gas dynamics , 1982 .

[108]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[109]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[110]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow , 1977 .

[111]  D. Peng,et al.  A New Two-Constant Equation of State , 1976 .

[112]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme , 1974 .

[113]  S. Majidi,et al.  Supersonic Liquid Jets Into Quiescent Gaseous Media: An Adaptive Numerical Study , 2016 .

[114]  M. Trujillo,et al.  Evaluating the performance of the two-phase flow solver interFoam , 2012 .

[115]  J. Larsson,et al.  On implicit turbulence modeling for LES of compressible flows , 2009 .

[116]  E. Johnsen Spurious oscillations and conservation errors in interface-capturing schemes , 2008 .

[117]  D. B. Kothe,et al.  Accuracy and Convergence of Continuum Surface Tension Models , 1998 .

[118]  S. Osher,et al.  High-order ENO schemes applied to two- and three-dimensional compressible flow , 1992 .

[119]  P. Roe CHARACTERISTIC-BASED SCHEMES FOR THE EULER EQUATIONS , 1986 .

[120]  S. Osher,et al.  High resolution applications of the Osher upwind scheme for the Euler equations , 1983 .

[121]  L YoungsD,et al.  Time-dependent multi-material flow with large fluid distortion. , 1982 .

[122]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[123]  Jay P. Boris,et al.  Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works , 1973 .

[124]  M. Rudman INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 24, 671–691 (1997) VOLUME-TRACKING METHODS FOR INTERFACIAL FLOW CALCULATIONS , 2022 .