Grignard synthesis of fluorinated nanoporous element organic frameworks based on the heteroatoms P, B, Si, Sn and Ge

We present the synthesis and characterization of fluorinated polymers based on P, B, Si, Sn and Ge as heteroatoms via Grignard activation.

[1]  C. Tamborski,et al.  Synthesis of polyfluoroaromatic magnesium compounds through the exchange reaction , 1971 .

[2]  C. Powell,et al.  The NIST x‐ray photoelectron spectroscopy database , 1992 .

[3]  W. Lamanna,et al.  Structure of a zirconoxyborane having a zirconium-fluorine-carbon bridge , 1993 .

[4]  K. Neoh,et al.  Plasma polymerization and deposition of linear, cyclic and aromatic fluorocarbons on (100)-oriented single crystal silicon substrates , 2002 .

[5]  U. Flörke,et al.  Polyfluoroorganoboron-Oxygen Compounds. 4 [1] Lithium Pentafluorophenyltrimethoxyborate, Li[C6F5B(OMe)3], Reactions with Selected Electrophiles and Nucleophiles† , 2005 .

[6]  M. Pagliaro,et al.  New fluorinated functional materials , 2005 .

[7]  Xiaoping Wang,et al.  Fluorous metal-organic frameworks for high-density gas adsorption. , 2007, Journal of the American Chemical Society.

[8]  S. Kaskel,et al.  Element-organic frameworks with high permanent porosity. , 2008, Chemical communications.

[9]  Shih-Hsien Yang,et al.  Preparation of super-hydrophobic films using pulsed hexafluorobenzene plasma , 2009 .

[10]  Arne Thomas Functional materials: from hard to soft porous frameworks. , 2010, Angewandte Chemie.

[11]  S. Kaskel,et al.  New Element Organic Frameworks Based on Sn, Sb, and Bi, with Permanent Porosity and High Catalytic Activity , 2010, Materials.

[12]  S. Kaskel,et al.  New element organic frameworks viaSuzuki coupling with high adsorption capacity for hydrophobic molecules , 2010 .

[13]  N. Y. Adonin,et al.  Polyfluorinated organic compounds of boron , 2010 .

[14]  T. Müller,et al.  A new synthesis of triarylsilylium ions and their application in dihydrogen activation. , 2011, Angewandte Chemie.

[15]  A. Cheetham,et al.  Hydrogen storage in a highly interpenetrated and partially fluorinated metal-organic framework. , 2011, Inorganic chemistry.

[16]  Xiao Feng,et al.  Pore surface engineering in covalent organic frameworks. , 2011, Nature communications.

[17]  V. Nesterov,et al.  Fluorous metal-organic frameworks with superior adsorption and hydrophobic properties toward oil spill cleanup and hydrocarbon storage. , 2011, Journal of the American Chemical Society.

[18]  C. Serre Superhydrophobicity in highly fluorinated porous metal-organic frameworks. , 2012, Angewandte Chemie.

[19]  T. Müller,et al.  Silylium Ion/Phosphane Lewis Pairs , 2013 .

[20]  S. Kaskel,et al.  Porous phosphorus-based element organic frameworks: A new platform for transition metal catalysts immobilization , 2013 .

[21]  O. Miljanić,et al.  Superhydrophobic perfluorinated metal-organic frameworks. , 2013, Chemical communications.

[22]  B. Weckhuysen,et al.  Development of a 4,4’-biphenyl/phosphine-based COF for the heterogeneous Pd-catalysed telomerisation of 1,3-butadiene , 2013 .

[23]  Arne Thomas,et al.  An anionic microporous polymer network prepared by the polymerization of weakly coordinating anions. , 2013, Angewandte Chemie.

[24]  M. Rose Nanoporous Polymers: Bridging the Gap between Molecular and Solid Catalysts? , 2014 .

[25]  Andrew I. Cooper,et al.  Function-led design of new porous materials , 2015, Science.

[26]  Kashyap Dave,et al.  Characteristics of ultrasonication assisted assembly of gold nanoparticles in hydrazine reduced graphene oxide , 2015 .

[27]  Monica Lira-Cantu,et al.  Enhanced photovoltaic performance of inverted hybrid bulk-heterojunction solar cells using TiO2/reduced graphene oxide films as electron transport layers , 2015 .

[28]  Yingbo Zhao,et al.  Covalent Chemistry beyond Molecules. , 2016, Journal of the American Chemical Society.

[29]  D. Wass,et al.  Catalytic Dehydrocoupling of Amine–Boranes using Cationic Zirconium(IV)–Phosphine Frustrated Lewis Pairs , 2016 .

[30]  M. Horáček,et al.  Hydrosilane-B(C6F5)3 adducts as activators in zirconocene catalyzed ethylene polymerization. , 2016, Dalton transactions.

[31]  M. Antonietti,et al.  Nanoporous ionic organic networks: from synthesis to materials applications. , 2016, Chemical Society reviews.

[32]  R. Palkovits,et al.  Impacts of acidity and textural properties of oxidized carbon materials on their catalytic activity for hydrolysis of cellobiose , 2016 .

[33]  D. Wass,et al.  Small Molecule Activation by Intermolecular Zr(IV)-Phosphine Frustrated Lewis Pairs. , 2016, Journal of the American Chemical Society.

[34]  A. Budinská,et al.  Nucleophilic Tetrafluoroethylation Employing in Situ Formed Organomagnesium Reagents. , 2016, Organic letters.

[35]  M. Ingleson,et al.  Expanding Water/Base Tolerant Frustrated Lewis Pair Chemistry to Alkylamines Enables Broad Scope Reductive Aminations , 2017, Chemistry.

[36]  P. Fayon,et al.  Anionic silicate organic frameworks constructed from hexacoordinate silicon centres , 2017, Nature Chemistry.

[37]  B. Tan,et al.  Hypercrosslinked porous polymer materials: design, synthesis, and applications. , 2017, Chemical Society reviews.

[38]  Ronald A. Smaldone,et al.  Design Principles for Covalent Organic Frameworks in Energy Storage Applications. , 2017, ChemSusChem.

[39]  William R. Dichtel,et al.  Covalent Organic Frameworks as a Platform for Multidimensional Polymerization , 2017, ACS central science.

[40]  Arne Thomas,et al.  Trends and challenges for microporous polymers. , 2017, Chemical Society reviews.

[41]  Arne Thomas,et al.  3D Anionic Silicate Covalent Organic Framework with srs Topology. , 2018, Journal of the American Chemical Society.

[42]  A. Villinger,et al.  A Dimer of Hydrogen Cyanide Stabilized by a Lewis Acid. , 2018, Angewandte Chemie.

[43]  Isabel‐Maria Ramirez y Medina,et al.  Tuning the Optoelectronic Properties of Stannoles by the Judicious Choice of the Organic Substituents. , 2018, Inorganic chemistry.