Foveal changes in aquaporin‐4 antibody seropositive neuromyelitis optica spectrum disorder are independent of optic neuritis and not overtly progressive

Foveal changes were reported in aquaporin‐4 antibody (AQP4‐Ab) seropositive neuromyelitis optica spectrum disorder (NMOSD) patients; however, it is unclear whether they are independent of optic neuritis (ON), stem from subclinical ON or crossover from ON in fellow eyes. Fovea morphometry and a statistical classification approach were used to investigate if foveal changes in NMOSD are independent of ON and progressive.

[1]  Jerry L Prince,et al.  Aquaporin-4 IgG seropositivity is associated with worse visual outcomes after optic neuritis than MOG-IgG seropositivity and multiple sclerosis, independent of macular ganglion cell layer thinning , 2020, Multiple sclerosis.

[2]  L. Leocani,et al.  Subclinical neurodegeneration in multiple sclerosis and neuromyelitis optica spectrum disorder revealed by optical coherence tomography , 2020, Multiple sclerosis.

[3]  F. Paul,et al.  Longitudinal optic neuritis-unrelated visual evoked potential changes in NMO spectrum disorders , 2019, Neurology.

[4]  F. Paul,et al.  Cognitive Impairment in Neuromyelitis Optica Spectrum Disorders: A Review of Clinical and Neuroradiological Features , 2019, Front. Neurol..

[5]  M. Chakravarty,et al.  Attack-related damage of thalamic nuclei in neuromyelitis optica spectrum disorders , 2019, Journal of Neurology, Neurosurgery, and Psychiatry.

[6]  F. Paul,et al.  Pain in AQP4-IgG-positive and MOG-IgG-positive neuromyelitis optica spectrum disorders , 2018, Multiple sclerosis journal - experimental, translational and clinical.

[7]  F. Paul,et al.  Retinal ganglion cell loss in neuromyelitis optica: a longitudinal study , 2018, Journal of Neurology, Neurosurgery, and Psychiatry.

[8]  F. Paul,et al.  Association of Visual Impairment in Neuromyelitis Optica Spectrum Disorder With Visual Network Reorganization , 2018, JAMA neurology.

[9]  Alexander U. Brandt,et al.  Optical coherence tomography in neuromyelitis optica spectrum disorders: potential advantages for individualized monitoring of progression and therapy , 2017, EPMA Journal.

[10]  E. Schiffer,et al.  Metabolomics reveals distinct, antibody-independent, molecular signatures of MS, AQP4-antibody and MOG-antibody disease , 2017, Acta neuropathologica communications.

[11]  F. Paul,et al.  Fatigue as a symptom or comorbidity of neurological diseases , 2017, Nature Reviews Neurology.

[12]  Konrad Polthier,et al.  CuBe: parametric modeling of 3D foveal shape using cubic Bézier. , 2017, Biomedical optics express.

[13]  J. Bennett,et al.  Neuromyelitis Optica: Deciphering a Complex Immune-Mediated Astrocytopathy. , 2017, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society.

[14]  F. Paul,et al.  Microstructural visual system changes in AQP4-antibody–seropositive NMOSD , 2017, Neurology: Neuroimmunology & Neuroinflammation.

[15]  F. Paul,et al.  MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 4: Afferent visual system damage after optic neuritis in MOG-IgG-seropositive versus AQP4-IgG-seropositive patients , 2016, Journal of Neuroinflammation.

[16]  S. Gold,et al.  Insufficient treatment of severe depression in neuromyelitis optica spectrum disorder , 2016, Neurology: Neuroimmunology & Neuroinflammation.

[17]  A. Verkman,et al.  Complement-independent retinal pathology produced by intravitreal injection of neuromyelitis optica immunoglobulin G , 2016, Journal of Neuroinflammation.

[18]  H. Wolburg,et al.  Aquaporin-4 in Astroglial Cells in the CNS and Supporting Cells of Sensory Organs—A Comparative Perspective , 2016, International journal of molecular sciences.

[19]  Robert Powers,et al.  PCA as a practical indicator of OPLS-DA model reliability. , 2016, Current Metabolomics.

[20]  Pablo Villoslada,et al.  The APOSTEL recommendations for reporting quantitative optical coherence tomography studies , 2016, Neurology.

[21]  H. Kim,et al.  Subclinical primary retinal pathology in neuromyelitis optica spectrum disorder , 2016, Journal of Neurology.

[22]  V. Fung,et al.  Radiological differentiation of optic neuritis with myelin oligodendrocyte glycoprotein antibodies, aquaporin-4 antibodies, and multiple sclerosis , 2016, Multiple sclerosis.

[23]  C. Lucchinetti,et al.  Neuromyelitis optica and the evolving spectrum of autoimmune aquaporin‐4 channelopathies: a decade later , 2016, Annals of the New York Academy of Sciences.

[24]  A. Kakita,et al.  Clinicopathological features in anterior visual pathway in neuromyelitis optica , 2016, Annals of neurology.

[25]  Pablo Artal,et al.  Image Formation in the Living Human Eye. , 2015, Annual review of vision science.

[26]  A. Traboulsee,et al.  International consensus diagnostic criteria for neuromyelitis optica spectrum disorders , 2015, Neurology.

[27]  E. Thévenot,et al.  Analysis of the Human Adult Urinary Metabolome Variations with Age, Body Mass Index, and Gender by Implementing a Comprehensive Workflow for Univariate and OPLS Statistical Analyses. , 2015, Journal of proteome research.

[28]  V. Lennon,et al.  Aquaporin-4 autoimmunity , 2015, Neurology: Neuroimmunology & Neuroinflammation.

[29]  Mike P. Wattjes,et al.  The investigation of acute optic neuritis: a review and proposed protocol , 2014, Nature Reviews Neurology.

[30]  G. Hu,et al.  Involvement of Aquaporin 4 in Astrocyte Function and Neuropsychiatric Disorders , 2014, CNS neuroscience & therapeutics.

[31]  Yong He,et al.  A tract-based diffusion study of cerebral white matter in neuromyelitis optica reveals widespread pathological alterations , 2012, Multiple sclerosis.

[32]  Axel Petzold,et al.  The OSCAR-IB Consensus Criteria for Retinal OCT Quality Assessment , 2012, PloS one.

[33]  S. Crewther,et al.  A role for aquaporin-4 in fluid regulation in the inner retina , 2009, Visual Neuroscience.

[34]  Jacqueline A Palace,et al.  Aquaporin-4 antibodies in neuromyelitis optica and longitudinally extensive transverse myelitis. , 2008, Archives of neurology.

[35]  B. Weinshenker,et al.  A secondary progressive clinical course is uncommon in neuromyelitis optica , 2007, Neurology.

[36]  Peter Wiedemann,et al.  Müller cells in the healthy and diseased retina , 2006, Progress in Retinal and Eye Research.

[37]  J. Provis,et al.  Anatomy and development of the macula: specialisation and the vulnerability to macular degeneration , 2005, Clinical & experimental optometry.

[38]  Ichiro Nakashima,et al.  A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis , 2004, The Lancet.

[39]  Peter Wiedemann,et al.  Pathomechanisms of Cystoid Macular Edema , 2004, Ophthalmic Research.

[40]  M. Tamai,et al.  Müller cells in the human foveal region , 2001, Current eye research.

[41]  F. Paul,et al.  Severe structural and functional visual system damage leads to profound loss of vision-related quality of life in patients with neuromyelitis optica spectrum disorders. , 2017, Multiple sclerosis and related disorders.